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Abstract

I study how preferences for neighborhood amenities vary by income. Using data on over
150 million visits to restaurants, shops, personal services, and entertainment places, I estimate
a model of demand for amenities. I find that higher and lower-income urban residents have
heterogeneous preferences for individual establishments, which often vary systematically along
observable dimensions such as category, brand, and price level. Using the location and estimated
quality of each establishment, I construct an aggregate Neighborhood Amenity Quality Index
(NAQI) that measures the value of each neighborhood’s overall access to amenities. Despite
the heterogeneity in establishment-level preferences, neighborhood-level preferences exhibit a
strong positive correlation; higher and lower-income residents generally agree on the quality of
a neighborhood’s overall access to amenities. Densely populated neighborhoods close to the
urban core have especially high-quality access to amenities. Conditional on population density,
neighborhoods with better amenity access tend to be richer, more educated, and have more
expensive rents.
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1 Introduction

Cities have become increasingly segregated by income over the past 30 years (Reardon et al., 2018),
leading to rising concerns about the distributional consequences of income segregation. Recent re-
search has shown how neighborhood amenities can amplify within-city spatial sorting and inequality
by endogenously responding to changes in neighborhood demographics, which can encourage ad-
ditional in-migration and reduce a neighborhood’s appeal for incumbent residents (Couture et al.,
2019; Almagro and Domınguez-Iino, 2022). The role of specific categories of amenities, such as
restaurants and shops, has been prominently featured in the discourse of neighborhood gentrifi-
cation.1 In response, policymakers often target the composition of a neighborhood’s amenities
through policies such as zoning restrictions, the designation of landmarks and cultural heritage
districts, and bans on chain stores (Klopack, 2021).

The extent to which neighborhood amenities can amplify spatial sorting and inequality will
depend on the correlation of preferences for amenities (Waldfogel, 2010; Almagro and Domınguez-
Iino, 2022). When preferences for amenities are more aligned across the income distribution, new
amenities that enter a neighborhood are likely to have broad appeal. When preferences are less
aligned. However, amenities that enter a gentrifying neighborhood to target new, wealthier residents
may crowd out those amenities enjoyed by the incumbent, lower-income residents. A challenge for
policymakers interested in ensuring that neighborhood amenities provide value to all residents is
identifying the types of amenities for which residents have more aligned preferences.

In this project, I study how the preferences for restaurants, shops, personal services, and en-
tertainment places vary by income. To separate preferences for amenities from access to these
amenities, I build and estimate a model of demand for individual establishments within a city.
Agents in the model receive stochastically arriving opportunities to visit some amenity and then
choose to frequent a specific establishment (or their outside option) based on the location and
quality of each establishment. Decisions are made hierarchically: first, agents choose a category
(e.g., shops), then a subcategory (e.g., grocery stores), and finally a specific establishment.2

I estimate the model using large-scale data on the locations of over 1.2 million amenities in
the 100 largest US cities, combined with data on individual visits to these locations by over 15
million GPS-enabled devices during 2019. Amenities are partitioned into four main categories—
restaurants, shops, personal services, and entertainment—and 45 subcategories. For each device
in the data, I use parcel-level data on their place of residence to estimate whether they are above
the city’s median household income (‘higher income’) or below median income (‘lower income’).
I do not observe any prices (and some amenities, such as libraries, are free), so I specify the
model in terms of driving time from home and work and convert all measures of utility into units

1See, for example, recent articles in the New York Times (Gordinier, 2016; Kolomatsky, 2020), the Wall Street
Journal (Raleigh, 2017; Ukueberuwa, 2020), and the Atlantic (Smith, 2016)

2I use ‘establishment’ to refer to the location of any neighborhood amenity, including both private establishments
and public amenities such as parks.
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equivalent to saving a minute of driving time. The estimated model provides two key ingredients
for understanding the value of neighborhood amenities: 1) establishment-level preference estimates
for each income group and 2) a framework for valuing a neighborhood’s overall access to amenities.

I find that higher and lower-income residents’ preferences for individual establishments are
positively correlated in all 45 subcategories of amenities but that the degree of correlation varies
substantially. For large retail subcategories, such as malls and general merchandise stores, higher
and lower income preferences have a correlation coefficient of over 0.92. Within these subcategories,
the entry of any establishment is likely to provide similar value to a broad swathe of the income
distribution. Meanwhile, preferences for subcategories such as restaurants, barber shops, and gyms
are less correlated. Within these subcategories, there is more scope for establishments that enter
a neighborhood to tailor to a specific sub-population to the detriment of other residents. For a
subset of establishments, I also observe characteristics such as brand affiliation and Yelp price
levels. These underlying characteristics are often predictive of which income group has stronger
preferences for an establishment. For example, higher-income residents tend to prefer restaurants
with higher Yelp prices and cuisines, such as New American. In contrast, lower-income residents
often prefer cheaper restaurants and those that are affiliated with a large chain.

I next turn to how preferences for a neighborhood’s overall access to amenities vary by income.
I define a ‘Neighborhood Amenity Quality Index’ (NAQI) that captures the value of amenity access
for higher and lower-income residents of different Census block groups within a city.3 Neighborhoods
with more high-quality establishments nearby will have a higher NAQI value. I find that preferences
for neighborhoods’ overall level of amenity access are far more correlated than preferences for
individual establishments – the average within-city correlation in NAQI values is 0.90. Rather than
neighborhoods tailored to wealthy residents and others tailored to poor residents, cities generally
contain neighborhoods dense in amenities with sufficient variety to have broad appeal and other
neighborhoods with more limited access. The primary determinant of the value of neighborhoods’
access to amenities is population density. Dense neighborhoods close to the urban core benefit
from the residential agglomeration effects and tend to have a rich set of amenities to explore.
Conditional on density, neighborhoods with higher household income, rent, and education tend to
have more valuable access to amenities. Despite the high level of correlation in neighborhood-level
preferences, some systematic differences do emerge; for example, the relationship between NAQI
values and neighborhood characteristics such as rent and education is about twice as strong for
higher-income residents than for lower-income residents.

Overall, the high levels of positive correlation in preferences for neighborhoods suggest that the
direct effects of tailoring these types of amenities to local demographics will generally be second-
order to the total density of nearby amenities. While the short panel of available data precludes
studying the joint process of demographic change and amenity entry/exit directly, I use the cross-

3The estimated NAQI values for each neighborhood are available by request and will be publicly posted in the
future.
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sectional estimates to simulate a fairly extreme version of gentrification by replacing all of the top
25% establishments for lower-income residents with replicas of the top 25% of establishments for
higher income residents. In the average city, this has a modest effect on total utility, equivalent
to +18.1 minutes of weekly driving time saved for higher-income residents and −21.9 minutes
for lower-income residents (respectively +$313 and −$371 annually if residents value their time
at $20/hour). Nonetheless, concurrent changes in rents, other amenities such as school quality,
job access, social cohesion, and "neighborhood character," or substantial re-sorting by residents in
response to changes in amenities may still lead to large overall welfare effects.

Earlier work on estimating the value of neighborhood amenities has generally taken one of two
approaches. The first approach treats the value of amenities as a residual in a residential choice
model, building on the canonical Rosen-Roback model (Rosen, 1979; Roback, 1982).4 This approach
has become especially common in quantitative spatial economics models, reviewed in Redding and
Rossi-Hansberg (2017). In one notable example, Ahlfeldt et al. (2015) find that the elasticity
of amenity quality to population density is twice that of the elasticity of workplace productivity
to density, consistent with the strong relationship between amenity quality and population density
that I find in this paper. The second common approach, which I use here, is a ‘bottom-up’ approach
that uses data on individual choices to estimate revealed preferences for neighborhood amenities.5

As two examples, Couture (2016) combines data on the locations of restaurants and the travel
times of residents going out to eat to show that the value of areas dense in amenities is primarily
due to variety, rather than shorter travel times, and Davis et al. (2019) uses geolocation data from
Yelp reviews to show how both spatial and social frictions lead to ethnic and racial segregation
in consumption of restaurants. The bottom-up approach has traditionally been limited by a lack
of comprehensive data on the locations of amenities matched to individual visits to each location.
My use of large-scale GPS data enables measuring the value of neighborhood amenities for many
different categories and across all large US cities.

A related line of research has studied how preferences for neighborhood amenities can affect
residential sorting. Recent work by Couture et al. (2019), Baum-Snow and Hartley (2020) and
Couture and Handbury (2020) find that the return of higher income, more educated residents
to urban cores is due to a rising tendency for these residents to sort towards areas rich in non-
tradeable, consumption amenities.6 These sorting-on-amenities results have two possible underlying
sources: differences in how groups of residents value the specific amenities located in urban cores
or differences in the overall weight they place on neighborhood amenities when making residential

4Albouy (2008) find that the Rosen-Roback quality of life measures are positively correlated with observable
amenities.

5Similar work by Handbury and Weinstein (2015) and Handbury (2021) use data on product-level choices to
estimate local price indices.

6This more recent work builds on a long history of research into urban amenities, neighborhood change, and
gentrification. See, for example, Brueckner et al. (1999); Glaeser et al. (2001); Vigdor et al. (2002); Ellen and
O’Regan (2010); McKinnish et al. (2010); Guerrieri et al. (2013); Autor et al. (2017); Lee and Lin (2018); Glaeser et
al. (2018); Su (2022); Fogli and Guerrieri (2019); Brummet and Reed (2019)
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choices. The results here suggest the latter explanation is more likely as I find that higher and
lower-income residents both value the amenity access of the urban core far more than that of other
neighborhoods. The recent trends in sorting, therefore, likely stem from differences in overall
willingness to pay for amenity access. While lower-income residents still prefer the amenities of
the urban core, they are displaced by higher-income residents with a greater willingness to pay for
better access to amenities.

Other research has emphasized how heterogeneity in preferences for amenities combined with
endogenous amenities can amplify spatial inequality. As demographics shift, neighborhood ameni-
ties will be tailored to the tastes of newcomers, which can magnify demographic sorting and reduce
the welfare of incumbent residents. This research extends work on spillovers between demographic
groups through supply-side responses to local preferences (Waldfogel, 2003, 2010). At the city
level, Diamond (2016) shows that the endogenous response of amenities in high-skill cities fuels in-
creased across-city sorting by skill. More recent papers extend the intuition from Diamond (2016)
to show how endogenous amenities can reinforce within-city sorting (Couture et al., 2019; Hoel-
zlein, 2019; Almagro and Domınguez-Iino, 2022). My estimates of subcategory-specific preference
correlations highlight that certain types of amenities with less aligned preferences (e.g., personal
services) have more potential to act as amplifiers of spatial inequality than other types with more
aligned preferences (e.g., general merchandise).

Finally, this project draws from a developing literature using data from GPS-enabled devices to
study questions related to urban mobility. Applications of GPS data include mobility during the
COVID-19 pandemic (Chang et al., 2020; Allcott et al., 2020), waiting times at voting polls (Chen et
al., 2022), the effect of new transit options on commuting behavior (Gupta et al., 2022), knowledge
spillovers between employees of different firms (Atkin et al., 2020), and alternative measures of
segregation based on where people spend their time (Caetano and Maheshri, 2019; Athey et al.,
2021; Cook et al., 2022). Most related to my work, Athey et al. (2018) estimate demand for
lunch restaurants and Miyauchi et al. (2021) study how the consumption externalities of commute
patterns shape the spatial structure of cities. A common downside of GPS data is the lack of
individual-level demographics; in this project, I use a novel method for inferring individual-level
income by matching devices to their precise home parcel.

2 Data

Locations of neighborhood amenities. I identify neighborhood amenities using SafeGraph’s
Places dataset, which includes the name, location, category, associated brands, and the polygon
describing the location’s footprint for a large number of Points of Interest (POIs).7 I subset to the

7The data cover only those amenities which have established physical footprints, which excludes many features
of a neighborhood that residents may appreciate, such as trees, clean streets, access to quality schools, and public
transportation, but encompasses a wide range of both commercial and public locations such as restaurants, shops,
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100 most populous Core-Based Statistical Areas (CBSAs) to focus on urban areas. I categorize
amenities into four main categories: restaurants, shops, personal services, and entertainment places.
Within each category, I assign more granular subcategories based on each establishment’s North
American Industry Classification System (NAICS) code. For example, restaurants are further
divided into full-service, limited-service, cafes, and drinking places. Shops are divided into grocery
stores, malls, department stores, bookstores, and more. Personal services include places such
as barber/salons, banks, religious organizations, hospitals, mechanics, and entertainment places
include cinemas, parks, gyms, golf courses, performing arts venues, and others. Appendix Table
A1 documents the complete set of 45 subcategories, the NAICS codes used to identify them, and
the number of POIs within each.

Amenity characteristics from Yelp. I augment the SafeGraph data using data scraped from
Yelp on the average rating, number of reviews, and price level for each establishment that has a
Yelp page. The availability of these features varies by amenity category; most restaurants have
pages, but other amenities, such as parks, may not.

Visits to amenities. I build a dataset of visits to individual locations during 2019 using a sample
of location histories from GPS-enabled devices provided by Replica. The raw data consists of GPS
‘stays,’ each of which includes a unique device ID, entry time, exit time, and the coordinates visited.
Home and work locations are assigned for each device-quarter using heuristics on when people are
at home and work. At a high level, a device’s home is defined as the most frequent overnight
location, and its work is the most frequent non-home daytime location. Stays outside of home
and work are matched to SafeGraph POIs using the POI polygons. For POIs contained within
other POIs—e.g., a store within a large mall—the ‘parent’ POI is considered the visited location.
Appendix Section A.1 contains additional details on the GPS data construction.

Individual income. A downside of GPS data is that they do not include any characteristics of
the individual. Past research using GPS data has often inferred demographics based on the median
household in its home location (e.g., Census block group). However, in mixed-income block groups,
using the median income to classify devices as higher or lower income will introduce substantial
measurement error. Instead, I combine information on the characteristics of a device’s home parcel,
an estimate of the market value of their home, and the income distribution of their home block
group to predict whether each device is part of a household that is above the median household
income in the CBSA (‘higher income’) or below median income (‘lower income’). I describe the

barbers, gyms, parks, churches, zoos, libraries, dentists, banks, and more. Abbiasov and Sedov (2022) compares the
number of establishments in different categories in both Safegraph and in the Census’s County Business Patterns and
finds that coverage is similar.
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whole procedure in Appendix Section A.2. In Section 5.4, I show that my results are robust to
alternative measures of income.

Driving times. I use driving times—rather than crow-flies distance—to measure how accessible
a POI is from a resident’s home and work locations. I compute driving times using Graphhopper, a
router built on OpenStreetMaps. To reduce the number of routing requests, I pre-compute driving
times between all pairs of block groups within each CBSA, using the block group centroids as the
start and end points. For the largest 100 CBSAs, this involves computing nearly 750 million total
routes.

Estimation sample. The final sample consists of 15 million devices living in the largest 100
CBSAs nationwide. Table 1 provides a number of summary statistics for the aggregate data as well
as split out for a subset of large CBSAs. For the average device-quarter, I observe 93.2 stays, of
which 47.4 are at home, 11.8 are at work, and 15.7 are at some SafeGraph POI. Appendix Table A1
documents the number of visits and quantiles of the driving time distribution for each subcategory
of amenity.

Sample weights. The GPS data is not a random sample of the US population – it tends to over-
sample from slightly lower income, less educated, and less white block groups within a city. I discuss
a number of measures of sample quality in Appendix Section A.3. For all analyses, I use sample
weights to adjust for non-uniform sampling. I weight each device-quarter by ωiq = NTotal

g(iq) /N
GPS
g(iq)

where NGPS
g(iq) is the number of GPS devices observed in the device’s home block group g(iq) and

NTotal
g(iq) is the 2019 5-year ACS population of the block group.

3 Consumption and access to local amenities

In this section, I show how higher and lower-income residents differ in both their access to and
levels of consumption of different categories of neighborhood amenities.

First, higher-income residents live near substantially fewer amenities of all categories. To show
this, I regress the log number of establishments within a driving radius of 5, 15, and 30 minutes
from each individual’s home on whether an individual is higher income. The average higher-income
resident, controlling for their home CBSA, has 22% fewer shops and restaurants, 15% fewer personal
services, and 6% fewer entertainment places within a 15-minute drive from home (Figure 1 Panel
a). While many higher-income residents have begun to move towards city centers in recent decades,
the majority continue to live in less dense suburbs with worse access to amenities (Couture et al.,
2019). Appendix Figure C.2 repeats the regressions but controls for the log population density
of each device’s home block group. Controlling for density, higher-income residents have 5-20%
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Table 1: GPS device sample

Example CBSAs

All Chicago Bay Area, CA Los Angeles Houston Phoenix

Num. devices 15,090,847 634,050 316,709 863,717 525,229 356,265
Num. device-quarters 24,698,171 1,048,719 517,750 1,377,706 852,045 569,294
% higher income 52.71 52.92 53.78 53.59 50.93 51.69
% with work 67.29 67.65 66.43 63.67 68.49 62.37
Avg. quarterly stays 93.21 94.53 91.98 90.6 98.58 87.32

[85.13] [85.52] [83.59] [85.33] [88.88] [81.36]

Avg. quarterly stays at POI 15.66 16.35 17.02 15.52 16.92 15.71
[23.51] [23.8] [24.15] [23.63] [24.74] [24.69]

Avg. quarterly stays at home 47.37 48.36 47.23 47.08 48.18 46.55
[38.61] [38.95] [38.36] [39.2] [38.67] [38.62]

Avg. quarterly stays at work 11.82 12.03 11.87 11.31 12.66 10.45
[17.49] [17.48] [17.72] [17.71] [18.41] [16.79]

Note: This table documents the size of the sample and the number of stays observed for the average device-quarter. Stays
at POI are those stays that are matched to an exact location in the SafeGraph data. Stays at home and work are the
average number of stays labeled as at the device’s home or work location. Standard deviations are presented in brackets.
All statistics are weighted by the device’s sample weight.

more amenities within a 15-minute drive, although they continue to have fewer amenities within a
5-minute drive.

Second, higher-income residents tend to work near more amenities, although the gap is much
smaller than with amenity access from home. The average higher-income resident has access to
2-9% more establishments of each category within a 15-minute drive of their workplace (Figure 1
Panel b). This is again closely tied to density; while higher-income residents tend to live in the
suburbs of cities, they commute to denser areas to work.

Third, despite worse access to amenities from home and only marginally better access from work,
higher-income residents visit far more amenities each quarter (Figure 1 Panel c). On average, a
higher-income resident will visit 14% more restaurants, 23% more shops, 9% more personal services,
and 22% more entertainment places than the average lower-income resident. Even when controlling
for both home and work block groups, higher income residents continue to visit 2-6% more amenities
of each category each quarter, suggesting both access and differences in preferences play a role.8

Finally, in order to visit different amenities, higher-income residents will travel an average of
2-8% further from home and work than lower-income residents each time (Figure 1 Panel d). Even
when controlling for home block group, higher-income residents continue to visit amenities that are
1-2% further from home and work than lower-income amenities (Appendix Figure C.2).

Appendix Figure C.3 repeats these analyses for each of the 45 subcategories of amenities.
The most significant differences between higher-income and lower-income consumption are for full-

8This gap in the number of visits even when controlling for home and work locations also helps motivate my use
of an individual-level measure of income, rather than using the median household income of their home block group.
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service restaurants, malls, parks, golf courses, and fitness centers. The only categories that higher-
income residents tend to have better access to from home are golf courses, dry cleaning/laundry,
dentists, and other health practitioners (e.g., chiropractors). The broad trends are primarily similar
across both higher-level categories as well as subcategories of amenities – despite having worse access
to these amenities from home and only slightly better access from work, higher-income residents
consume far more amenities each quarter.

Figure 1: Neighborhood amenities: access and consumption

(a) Access to amenities from home
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(b) Access to amenities from work
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(c) Quarterly visits to amenities
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(d) Driving time to amenities visited
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Note: This figure plots coefficients from a series of regression where the right-hand side is an indicator for whether a device
is above median income. Each regression includes fixed effects for the CBSA. Each marker in a plot covers a 95%
confidence interval, with standard errors clustered at the device level. Panel (a) and (b) are at the device-quarter level
and regress the log number of establishments within different lengths of driving time. The outcomes for Panel (c) is the
log number of visits to establishments of each category that quarter. Panel (d) is at the visit level and regresses the log
of driving times from home and work on whether the device is higher income. To handle zeros, I use an inverse
hyperbolic sine transformation instead of log, although I label it as ‘log’ for brevity.

4 Modeling amenity choice

The descriptive facts highlight that higher and lower-income residents of a city consume different
levels and categories of neighborhood amenities. However, these descriptives conflate preferences
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and access; while consumption varies by income, so does the level of access. To separate preferences
from access, I estimate a choice model of amenity consumption. The model provides a unified
framework for studying both correlations in preferences for individual establishments as well as the
value of a neighborhood’s overall access to amenities.

More concretely, I model demand for amenities as a three-level nested logit, illustrated in
Figure 2. Opportunities to consume some amenity arrive stochastically according to a Poisson
arrival process with an arrival rate that can vary by time of day and income. This arrival process
mimics different levels of external time constraints; a lower arrival rate corresponds to having less
availability to visit amenities. Upon receiving a choice opportunity, an individual first chooses
between visiting a restaurant, shop, personal service, entertainment place, or their outside option.
Second, she chooses a subcategory within the chosen main category. For example, within shops,
she may choose between malls, grocery stores, bookstores, and more. Finally, she chooses a specific
establishment within a subcategory. Her choice will depend on the time of day, the driving times
from home and work of different establishments, the type and quality of each establishment, and
an idiosyncratic component.

When presented with a choice opportunity at some time of week t, the probability that an
individual i chooses establishment j can be decomposed into three probabilities, corresponding to
each level of the model:

Pitj = Pitj|Bm
∗ PitBm|Bn

∗ PitBn (4.1)

where Bm is a subcategory nest and Bn is a main category nest. Pitj|Bm
, PitBm|Bn

, and PitBn each
take the form of a logit. Below, I describe in detail how each level is modeled, starting from the
lowest level.

Figure 2: Model structure
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4.1 Lowest level: choice of a specific establishment

Conditional on choosing to consume within subcategory Bm, an individual next selects a specific
establishment to visit. Her choice set consists of all of the subcategory’s establishments within the
CBSA. The indirect utility from a given establishment j at time of week t is

uijt = γk(i)j − κHk(i)td
H
ij − κWk(i)td

W
ij + εijt (4.2)

= δijt + εijt (4.3)

where the individual’s type is denoted k(i), γk(i)j are establishment-type taste parameters, and dHij
and dWij are driving times from home and work with corresponding disutilities κHk(i)t and κ

W
k(i)t that

vary by time of week and individual type. The model is defined separately for each subcategory
Bm, although I omit any subcategory subscripts for clarity. I discretize the time of week t into
six bins corresponding to (weekday, weekend)× (morning, afternoon, evening).9 The idiosyncratic
component (εijt) is redrawn for each choice opportunity, so there is no persistence in idiosyncratic
preferences across choice opportunities. Following McFadden et al. (1973), I assume that these
errors are distributed according to a type 1 extreme value distribution, which gives the usual
conditional choice probabilities of consuming at a specific establishment within subcategory Bm:

Pijt|Bm
= exp(δijt)∑

l∈Bm
exp(δilt)

(4.4)

Unlike standard demand settings, I do not observe any prices. Instead, the ‘cost’ of consuming
at any given establishment is the driving time from home and, where applicable, work. As such,
the γk(i)j capture the ‘price inclusive’ value of establishment j to an average user of type k. These
values are identified from 1) the frequency at which an establishment is chosen from the set of
alternatives and 2) the driving time individuals were willing to travel in order to visit. Intuitively,
if an establishment is frequently visited by residents who live and work far away, it must have a
high γk(i)j term to rationalize this behavior.

I normalize the model using the disutility of driving by fixing the disutility of driving an extra
minute from home on weekday evenings to be −1 for all subcategories. This has two advantages.
First, it allows the scale of the idiosyncratic component of utility to vary across different subcate-
gories of amenities. Second, it converts the utility of visiting a given establishment into interpretable
units. I will use γ̃kj to denote the normalized establishment-type taste parameters for individuals of
type k consuming at establishment j and δ̃ijt to denote the normalized mean utility for individual

9For times of week, morning is 2am to 11am, afternoon is 11am to 5pm, and evening is 5pm to 2am the next day.
Friday evenings are considered weekend evenings and Sunday evenings are considered weekday evenings.
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i at time of week t. These are given by

γ̃kj ≡
γkj − γ̄k
κHk0

, δ̃ijt ≡ γ̃k(i)j −
(
κHk(i)td

H
ij + κWk(i)td

W
ij

κHk(i)0

)

where I also re-center the establishment parameters to be relative to the median establishment for
this subcategory and individual type (γ̄k). Therefore, the difference γ̃kq− γ̃kr for two establishments
q and r corresponds to the difference in utility from consuming at establishment q instead of r,
with units that correspond to the number of minutes an individual of type k would be willing to
drive in order to go to establishment q instead of r.

4.2 Upper levels: choice of a category and subcategory

In the upper levels of the model, when an individual is presented with a choice opportunity, she
chooses a category of amenity (or the outside option) and then a subcategory within her chosen
category. The relative probability of choosing to consume within a given subcategory will depend
on the quality of her access to establishments of that subcategory based on her home and work
locations and the estimated establishment-level parameters for her income type.

I specify the indirect utility of consuming some alternative in subcategory Bm as

UitBm = WitBn + YitBm + εitBm

= νk(i)tBn
+ µk(i)Bm

+ βk(i)DTEitBm + εitBm (4.5)

where the error terms follow the generalized extreme value distribution corresponding to a nested
logit model (Ben-Akiva, 1973), WitBn = νk(i)tBn

is the component of utility from consuming at
category Bn and is parameterized as a set of category intercepts that vary by time of week, and
YitBm = µk(i)Bm

+ βk(i)DTEitBm is the component of utility from consuming at subcategory Bm. I
parameterize YitBm to include a set of subcategory intercepts, µk(i)Bm

, and an aggregate measure
of ‘driving time equivalents’ (DTE) at the level of the subcategory Bm at time of week t.

The aggregated DTEs provide a link between the establishment-level estimates in the lower
level and the upper levels of the model. These are similar to an inclusive value – they capture
the expected maximal draw from establishments in subcategory Bm for individual i at time t,
normalized to be in units of minutes of driving time. They are computed as

DTEitBm = σk(i)Bm
log

 ∑
j∈Bm

exp(δ̃itj)

 (4.6)

where σkBm is the scale parameter of the idiosyncratic component of utility for establishments within
subcategory Bm. The coefficient βk in Equation 4.5 captures the value of a minute of driving time
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through the normalization of utility into these units for each subcategory. In general, the DTEs
will be higher for individuals who live and/or work in areas with better access to high-quality
establishments within this subcategory.

Conditional on receiving a choice opportunity, the probability of consuming at some establish-
ment within subcategory Bm of main category Bn is given by

PitBm = PitBm|Bn
· PitBn

=

 exp
(
YitBm/ρk(i)Bn

)
∑
B`∈Bn

exp
(
YitB`

/ρk(i)Bn

)
( exp(WitBn + ρk(i)Bn

IVitBn)
1 +

∑
Bh∈B exp(WitBh

+ ρk(i)Bh
IVitBh

)

)
(4.7)

where the utility of the outside option is normalized to 0, B is the set of categories, ρk(i)Bn
measures

the degree of independence in unobserved utility for subcategories Bm within category Bn, and
IVitBn are the inclusive values that link the two upper levels. The inclusive values are computed as

IVitBn = log

 ∑
Bm∈Bn

exp
(
YitBm/ρk(i)Bn

)
4.3 Neighborhood Amenity Quality Index (NAQI)

The upper levels of the model provide a framework for measuring the overall value of a neigh-
borhood’s amenity access based on the driving times to different establishments for residents of
the neighborhood and the estimated preferences for these establishments. In this section, I define
a ‘Neighborhood Amenity Quality Index’ (NAQI) that captures the value of each neighborhood’s
access to amenities relative to the median neighborhood for each income group, with units that
correspond to weekly minutes of driving time.

For a device of type k living in Census block group g, the expected value of receiving a choice
opportunity at time of week t is given by

EVgtk = log

1 +
∑
Bn∈B

 ∑
Bm∈Bn

exp
(
WtkBn + YgtkBm

ρkBn

)ρkBn
 (4.8)

where I overload notation slightly to let WtkBn and YgtkBm represent the portion of utility from the
category and subcategory (respectively) at time of week t for a consumer of type k who lives in
block group g and has no workplace.

To construct the NAQI values for each neighborhood, I aggregate EVgtk across all times of the
week using the estimated weekly arrival rates of choice opportunities. The overall level of utility
in Equation 4.8 cannot be determined, so I normalize each neighborhood’s value relative to the
median neighborhood for each type in each CBSA. To convert the measure into interpretable units,
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I standardize using the coefficient on DTEs for a given type:

NAQIgk = 1
βk

∑
t

[
λ̃kt (EVgtk − EV0tk)

]
(4.9)

where EV0tk is the expected value of amenity access for the median neighborhood, βk is the esti-
mated value of a DTE for group k from Equation 4.5, and λ̃kt is the expected number of weekly
arrivals for each time of week.10

4.4 Estimation

The model is computationally challenging to estimate due to the number of observed choices, the
size of the choice sets, and the corresponding number of establishment-level parameters. In this
section, I provide an overview of the steps taken to make estimation tractable; Appendix B includes
additional details.

I estimate the model for each CBSA and each device type separately.11 For each CBSA and
device type, I estimate the model sequentially, beginning with estimation of the establishment-level
parameters for each separate subcategory. The computation time of the lower level is superlinear in
the number of choices within the choice set; sequential estimation allows me to partition the choice
sets into just the subset of establishments within a subcategory. Each lower level is a standard
logit, which I estimate by maximizing the log-likelihood of observing the set of amenity visits. The
likelihood contribution of any single visit is given by the log of Pijt|Bm

, defined in Equation 4.4.
Given the establishment-level estimates (γ̂) and driving time disutilities (κ̂), I then jointly

estimate the upper levels of the model using aggregate data on the number of visits to different
subcategories by each device-quarter. For each individual i in quarter q at time of week t, I
observe a vector ~niqt of total visits to each subcategory Bm. The panel nature of the GPS data
is necessary to identify the arrival rates of choice opportunities (λkt) or, equivalently, the share of
choice opportunities for which individuals select the outside option. Given the structure imposed
by the nested logit, the arrival rates are pinned down by the cross-category elasticities.12 The
likelihood contribution of observing the vector ~niqt for arrival rate λkt is the sum of the probability
of a given number of choice opportunities multiplied by the conditional probability of observing

10In estimation, I use a daily arrival rate λkt – I multiply this by five for weekdays and two for weekends to get the
weekly arrival rate.

11I include a buffer region of residents and establishments located within 10 miles of the CBSA’s border. Without
this buffer region, neighborhoods close to the border would look mechanically worse than those closer to the center,
as many of their nearby amenities would be outside of the CBSA.

12To build intuition for this, consider two possible worlds with ten observed visits to restaurants – one in which
choice opportunities are plentiful (i.e. large outside option share) and one in which choice opportunities are infrequent
(i.e. small outside option share). Across individuals, for an increase in the DTEs of restaurants holding fixed the
value of other categories, the amount of cross-substitution from other categories is informative about which world
we are in. When the outside share is small, any increase in restaurant consumption is likely to come via a reduction
in consumption of shops, personal services, and entertainment. Meanwhile, if the outside share is large, then cross-
substitution from these other categories will be more muted.
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~niqt given that number of choices:

P [~niqt] =
∞∑
a=0

P
[
a arrivals | λk(i)t

]
∗ P

[
~niqt | a

]
(4.10)

I derive the full expression in Appendix Section B.3, which I then use to maximize the log-likelihood
of observing the complete set of choice vectors, {~nitq}, for all individuals, quarters, and times of
week.

Finally, to implement these estimation steps at scale, I take advantage of a relatively new
computational framework from the machine learning world called PyTorch, which is especially
well-suited to settings where both the data and parameter space are large (Paszke et al., 2017). I
provide an overview of the advantages of using PyTorch in Appendix Section B.1. The combination
of PyTorch, partitioning estimation into individual CBSAs and income groups, and estimating the
model sequentially makes estimation feasible for large cities with >50,000 establishments. Using a
single GPU, it takes about 4-6 hours to estimate parameters for all device types in a large CBSA
such as Chicago. For each city and income group, the estimation procedure provides estimates for
each establishment (~γ), driving time disutilities (~κ), the utility of DTEs for each subcategory and
time of week (β), scale parameters (~ρ), category intercepts (~ν), subcategory intercepts (~µ), and
arrival rates (~λ).

4.5 Discussion

The model makes a number of simplifications in the pursuit of tractability at scale. The first
major simplification is to limit preference heterogeneity to just two types—higher and lower income
residents—rather than more flexible specifications such as within-type random coefficients.

The second simplification is to use only the driving times from home and work and consider
each trip in isolation rather than as a part of a larger chain of trips. A more realistic approach
might be to model an individual’s choice of an entire sequence of stays during a day, allowing the
driving time to be amortized over multiple stops at POIs within a single chain of trips. However,
devices in the GPS data are generally not observed for the entirety of the day, and chains of trips
to more than one POI are rarely observed (see Appendix Section A.1.4 for more details on trip
chains). In contrast, Miyauchi et al. (2021) use a small sample of GPS devices in Japan with full
coverage to estimate an activity-based model of trip chains.13 In a robustness check in Section 5.4,
I repeat the estimation using only trips that start and end at home and so are not part of a longer
trip chain.

Finally, while I parameterize the model in terms of driving time and use a minute of driving
as a numeraire, not all trips to amenities are by car, and car usage may vary by income, city,

13Relihan (2022) also explicitly models trip chains to study the effect of online retail on locations such as coffee
shops, using data on credit card purchases for estimation.
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and destination. As such, the minutes of driving time are better interpreted as an approximation
for the time it would take to get between home/work and an amenity, similar to—but hopefully
more representative—than the commonly used crow-flies distance. Appendix Figure C.1 plots the
normalized disutilities to driving time by time of week. On weekdays, both higher and lower-income
devices become more sensitive to driving further from home and less sensitive to driving further
from work as the day progresses. On weekends, individuals effectively only care about driving time
from home.

The primary benefit of these simplifications is to allow the estimation of the full model of
amenity consumption for all establishments and neighborhoods in the largest 100 CBSAs. In total,
I estimate how higher and lower-income residents value over 1 million establishments and over
100,000 neighborhoods.

5 Results

5.1 Who likes which amenities?

5.1.1 Relationship between establishment preferences and observables

In this section, I discuss the relationship between an establishment’s driving time equivalents
(DTEs) for each device type and its observable characteristics. While the model does not rely
on any characteristics of establishments for estimation, for a limited set of establishments I can
observe potentially informative characteristics such as a restaurant’s cuisine or a store’s brand.

To study the relationship between preferences and establishment observables, I run regressions
of the form

γ̃jk ∼ αkXj + CBSAj (5.1)

where Xj is always an indicator for whether an establishment has a given characteristic, e.g.,
whether its cuisine is Mexican or its brand is Trader Joe’s. I run each regression separately for
each characteristic and income group. The coefficient αk captures the average change in DTEs for
an establishment possessing a given characteristic relative to the average establishment.

Figure 3 shows how preferences for restaurants depend on Yelp characteristics and chain size.
Panel (a) shows preferences for different cuisine labels. Higher-income residents have relatively
stronger preferences for cuisines such as New American, Seafood, and Italian, while lower-income
residents have relatively stronger preferences for burgers, Mexican, and Chinese food. Panel (b)
shows that lower-income residents tend to prefer restaurants with a price level of $$ and dislike
pricier restaurants. In contrast, higher-income residents prefer the pricier $$$-$$$$ restaurants over
cheap, $ restaurants. These trends echo the findings of Davis et al. (2019), who use data on Yelp
reviewers to show that $$ restaurants are generally preferred to $ restaurants and that residents
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of higher income Census tracts exhibit more willingness to pay for the higher priced restaurants.14

Panel (c) documents preferences for restaurants that belong to chains. In general, chain restaurants
have broad appeal relative to establishments with only a single location. For the largest chains
(>250) locations nationwide), lower-income residents tend to have stronger preferences than higher-
income residents.

Figure 3: Relationship between DTEs and Yelp characteristics (Restaurants)
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Note: This figure documents the relationship between the establishments’ driving time equivalents (DTEs) for each income
group and observables. Each marker corresponds to the coefficient from a regression of DTEs for that device type on
whether the restaurant has a given characteristic (e.g., Yelp price of ‘$$$$’, with CBSA fixed effects. The regressions are
each run separately, and the comparison group is always all restaurants that do not have a given characteristic. Each
marker represents a 95% confidence interval. Cuisines are displayed in order of the point estimates for lower-income
residents.

I next look at the relationship between preferences and an establishment’s brand. Certain brands
such as Whole Foods and Starbucks have become commonly associated with gentrification in the
popular press (see, for example, Kolomatsky, 2020). Figure 4 plots regression coefficients for three

14Klopack (2021) shows that the Yelp price labels correspond closely with the average amount spent at a restaurant.
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types of amenities with prominent brands – restaurants, grocery stores, and general merchandise
stores. Panel (a) shows preferences for a number of the top restaurant brands. In general, lower-
income residents place higher value on these chain restaurants than higher-income residents. Of the
50 most common restaurant chains, 76% are preferred by lower income residents. The exceptions
include Sweetgreen, Starbucks, and Chipotle – for each of these chains, higher-income residents
tend to be more willing to drive further than lower income residents. However, there is also a
substantial vertical component of preferences – while lower income residents tend to prefer Taco
Bell and higher-income residents tend to prefer Chipotle, both types prefer McDonald’s to any
other chain.

Panel (b) and (c) document preferences for grocery brands and general merchandise stores. Here,
the vertical component of preferences is even more pronounced. While higher-income residents tend
to place more value on Trader Joe’s and lower-income residents have relatively stronger preferences
for Save-A-Lot, both types of residents prefer the average Meijer or Kroger to budget options such as
Aldi. Even Whole Foods, which is commonly considered a harbinger of gentrification (Kolomatsky,
2020), is an above-average grocery store for lower-income residents and preferred to some budget
options like Save-A-Lot. The magnitudes here are substantial; individuals prefer Meijer relative to
the average supermarket by over 15 DTEs, consistent with previous research finding that households
are willing to travel substantial distances to shop at their preferred grocery store (Allcott et al.,
2019). Within general merchandise, everyone prefers either Costco or Walmart to the many brands
of dollar stores. While dollar stores have become ubiquitous over the past decade—especially in
lower-income neighborhoods—these results suggest that residents would generally prefer to shop
at a Walmart or Costco but may frequent dollar stores when they are substantially closer than a
larger establishment like Walmart (and, given the low entry costs for a dollar store, they are able
to open enough locations to be the closer option often).

Appendix Table C2 reports the top brands for each subcategory as well as the brands with the
most significant gap between higher and lower income preferences. Many of these match what one
might expect – for automobile dealers, for example, Toyota is the top brand for both higher and
lower-income residents. Still, the dealers with the biggest gaps in preferences are Audi (H minus
L preferences) and Mitsubishi (L minus H preferences). The fitness center brand with the largest
difference between higher and lower income preferences is Pure Barre, while the brand with largest
difference between lower and higher income preferences is Planet Fitness.15

To the extent we can observe similar characteristics of proposed entrants to a neighborhood,
15Couture et al. (2019) create a ranking of restaurant brands that places more value on brands frequented by

residents of richer block groups. Similar to their results, I find that the restaurant brands with the largest gap
between higher and lower income preferences tend to be smaller, gourmet chains including Zoë’s Kitchen (1st), Cafe
Rio (2nd), and First Watch Restaurants (3rd). While they do not report the full ranking, they also find that Zoë’s
Kitchen is in the top 3.
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these results suggest that the residents most likely to value a new entrant are predictable ex-ante.16

However, for many other categories of amenities—such as barbers and dentists—there are little
to no observables available at scale that describe how establishments within the subcategory may
differ from each other.

5.1.2 Correlation of preferences within each subcategory

Many establishments have few observable characteristics besides their subcategory. However, I
can use the estimated establishment-level preferences for each device type to measure the overall
correlation in preferences for establishments within a given subcategory. In subcategories with a
higher positive correlation in preferences, any given establishment is more likely to have ‘aligned’
preferences between higher and lower income residents.

For each subcategory, Table 2 documents correlation in establishment-level preferences (γ̃jk),
the estimated standard deviation of the idiosyncratic component of utility, and the percent of each
device type’s visits that are to a given subcategory. Each statistic is averaged across CBSAs,
weighted by the total number of visits in that subcategory. Subcategories are ordered within a
main category by their total number of visits.

First, preferences are positively correlated in all 45 subcategories of amenities. However, the
degree of correlation in establishment-level preferences for higher and lower income residents varies
substantially across subcategories. The correlation is highest in categories dominated by large
establishments, such as malls, general merchandise, spectator sports, and gambling. The correlation
is lowest for many personal services, such as mechanics, car washes, dry cleaning/laundry, and
dentists, as well as for book/news stores and museums. Across all categories, the average unweighted
correlation in preferences is 0.65. When weighted by the number of visits in a subcategory, the
average correlation is 0.82, as larger categories tend to have more correlated preferences.

Normalizing utility by the distaste for driving time allows the variance of the idiosyncratic terms
to differ across subcategories and types of individuals. The middle two columns of Table 2 report the
estimated standard deviation of the idiosyncratic component of utility for each subcategory. The
idiosyncratic component of utility plays the largest role in many of the entertainment categories,
such as spectator sports, gambling, performing arts, and amusement parts.17 It is a relatively
minor factor for categories such as car washes, libraries, dry cleaning/laundry, and gas stations.

16Preferences may also be informative about which establishments exit. In Appendix Section C.1, I use a small
sample of observed exits to demonstrate how preferences are predictive of which establishment will exit as the
neighborhood gentrifies.

17Agarwal et al. (2017) find that credit card expenditure shares decline more rapidly with distance in sectors
transacted more frequently. In the model presented here, the implied visit shares will decline less rapidly with distance
if the variance of the idiosyncratic component is larger. Consistent with their finding that that distance matters least
for entertainment and sellers of durable goods such as cars, I estimate that the variance of the idiosyncratic components
is high in these subcategories.
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Figure 4: Relationship between DTEs and brands
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(c) General merchandise
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Note: This figure documents the relationship between establishments’ driving time equivalents (DTEs) for different income
groups and brands. Each marker corresponds to the coefficient from a regression of DTEs for that device type on
whether an establishment is affiliated with a given brand, with CBSA fixed effects. The regressions are each run
separately, and the comparison group is always all other establishments within that subcategory. Each marker represents
a 95% confidence interval. Brands are displayed in order of the point estimates for lower income residents.
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On average, idiosyncratic preferences play a similar role for higher and lower income residents
(weighted average of 9.26 and 9.39, respectively).

Finally, these correlations are for preferences for establishments conditional on consuming within
a given subcategory. Individuals may also have heterogeneous preferences across different subcate-
gories of amenities. The final three columns of Table 2 provide some evidence that this is the case by
documenting the percent of each device type’s visits that are within each subcategory. Higher and
lower income residents spend a similar percentage of their visits to amenities to various subcategories
of restaurants (11.4% and 11.7%, respectively) and of shops (55.4% and 55.8%). Some differences
arise for personal services and entertainment places – higher income residents allot 14.0% of their
visits to personal services and 19.2% to entertainment. In comparison, higher-income residents
allot 15.9% and 16.6% of their visits to the two categories, respectively. Many of the largest dif-
ferences across subcategories are within the entertainment category, where higher-income residents
spend proportionately more time at golf courses, fitness centers, spectator sports, and performing
arts than lower income residents. Within restaurants, lower income residents spend slightly more
of their visits at limited-service restaurants. For shopping, malls, which include both monolithic
malls filled with many stores as well as smaller strip malls, represent a disproportionately large
share of amenity visits for all device types.18 The different levels of consumption for subcategories
of amenities motivate nesting the establishment level estimates into a larger hierarchical model,
where preferences can vary across different categories and subcategories.

5.2 Who likes which neighborhoods?

5.2.1 Correlation in preferences for neighborhoods

The choice model provides a framework for comparing the value of amenity access for residents of
different neighborhoods through the NAQI values defined in Equation 4.9.19 For each income group,
NAQI units correspond to weekly minutes of driving time relative to the median neighborhood in a
CBSA; a NAQI value of 50 for higher-income residents implies that higher-income residents value
the amenity access of that neighborhood relative to their median neighborhood equivalently to
saving 50 minutes of driving time each week.

18This is in part due to data limitations; for many malls, the POI data do not provide separate polygons for each
store within a mall, and so visits to any store within the mall are only identified as being at the mall itself, not at
the specific store. See Appendix Section A.1.3 for more details on how stays are matched to individual POIs.

19Appendix Table C3 documents the average estimated arrival rates (~λ) and measures of nest independence (~ρ)
across CBSAs. The arrival rate of choice opportunities is only identified up to the normalization of the outside option
to zero. As the utility of the outside option is always normalized to zero, the extent to which the arrival rates vary
across types of individuals or across times of the week will be determined both by true differences in the frequency of
choice opportunities as well as differences in the value of the outside option. The subcategory and category intercepts
are not directly interpretable, as they capture both the propensity to consume in a given subcategory as well as the
re-scaling needed thanks to the coefficients of integration in the DTEs that link the lower level results to the upper
levels (Heiss, 2002).
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Table 2: Preferences for establishments within a subcategory

Corr(H, L) Std. dev. of error term % of all visits

H L H% L%

Restaurants
Full-service 0.760 10.161 10.545 6.80 6.84
Limited-service 0.692 9.637 9.858 1.95 2.31
Cafes; snacks 0.676 9.685 10.177 1.37 1.30
Drinking places 0.707 11.539 11.374 1.23 1.29
Shops
Malls 0.935 8.216 8.436 39.90 37.72
General merch., warehouse clubs 0.926 6.692 6.984 2.69 3.60
Gas stations, convenience 0.731 10.851 11.286 1.99 2.96
Grocery stores 0.777 7.436 7.837 1.91 2.16
Clothing, shoes 0.712 10.847 11.111 1.20 1.28
Building materials, gardening 0.826 7.408 7.982 1.25 1.41
Automobile dealers 0.781 12.624 12.659 1.16 1.19
Pharmacies 0.672 7.563 7.852 0.88 1.06
Beauty, glasses, personal care 0.735 8.100 8.137 0.85 0.89
Sporting goods, hobby, music 0.604 10.087 9.939 0.65 0.60
Furniture, furnishings 0.581 10.268 9.884 0.64 0.60
Department 0.797 6.780 6.745 0.63 0.58
Beer, wine, liquor, tobacco 0.483 8.146 7.570 0.36 0.37
Jewelry, luggage, leather 0.599 9.519 9.533 0.35 0.33
Electronics, appliances 0.528 8.637 8.023 0.31 0.37
Used merchandise 0.539 8.191 7.897 0.28 0.38
Office supplies 0.410 8.770 8.244 0.22 0.22
Books, news 0.346 6.288 5.296 0.11 0.11
Personal services
Hospitals 0.906 12.427 11.747 5.01 6.17
Salons, barbers 0.670 8.501 8.664 2.92 3.33
Religious organizations 0.515 9.427 9.404 2.03 1.95
Banks 0.645 8.367 8.519 1.20 1.46
Other health practitioners 0.530 9.444 9.373 1.05 0.96
Dentists 0.471 8.816 8.389 0.85 0.80
Mechanics 0.297 8.563 8.510 0.39 0.50
Telecom 0.457 7.310 6.272 0.20 0.25
Accounting, taxes, payroll 0.415 6.681 6.052 0.17 0.22
Drycleaning, laundry 0.411 5.742 5.567 0.11 0.13
Car washes 0.247 4.817 4.214 0.09 0.10
Entertainment
Parks 0.821 9.185 9.437 8.79 8.89
Golf courses 0.840 9.404 10.893 3.89 2.02
Fitness centers 0.741 9.043 8.949 2.68 1.88
Spectator sports 0.844 20.501 17.565 0.77 0.59
Gambling 0.891 16.395 15.344 0.47 0.72
Performing arts 0.824 18.982 18.107 0.56 0.48
Amusement parks 0.821 18.510 17.699 0.45 0.45
Movie theaters 0.770 9.060 8.681 0.56 0.49
Other amusement, recreation 0.619 10.461 9.731 0.39 0.40
Bowling 0.603 9.345 7.686 0.27 0.27
Libraries 0.470 5.851 5.492 0.24 0.25
Museums, zoos, gardens 0.442 11.718 10.524 0.15 0.13

Note: This table documents estimation results for each subcategory of amenities. The correlations in preferences and
standard deviations of error terms are aggregated across CBSAs by taking the average of the CBSA-level estimation
results weighted by the total number of visits to that subcategory in a CBSA. Correlations exclude a small number of
establishments that had zero visits by either H or L residents. H and L refer to higher and lower income residents
(respectively).
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Figure 5 illustrates the NAQI values for the Chicago CBSA, zoomed in on Cook County. The
most valuable neighborhoods for both higher and lower income residents are those closer to the
downtown area – residents value the amenity access of living downtown by upwards of 100 minutes
of saved weekly driving time over the median neighborhood. Block groups along the major arterial
highways leading into downtown Chicago are also high value, thanks to the access they provide to
the amenity-rich urban core. Panel (c) maps the difference between NAQI values for higher and
lower income residents. While both residents value the amenities of the urban core, differences
in preferences arise as we move away from the core towards less dense neighborhoods. Consistent
with the income sorting patterns in Chicago, lower income residents have higher relative values for
the amenities of South Chicago, and higher-income residents have higher values for the amenities
in the more Northern parts of the city. Appendix Figure C.5 replicates these maps for the San
Francisco Bay Area, Los Angeles, and Boston.

Figure 5: NAQI: Chicago

(a) Higher income (b) Lower income (c) Difference (H - L)

Note: This figure illustrates the estimated block group level NAQI values in Equation 4.9 for the Chicago-Naperville-Elgin,
IL-IN-WI CBSA, zoomed in to Cook County (outlined in black). NAQI units correspond to minutes of weekly driving
time relative to the median neighborhood in a CBSA.

While Figure 5 shows some systematic differences in preferences for neighborhoods outside of
Chicago’s urban core, in general preferences for neighborhoods’ access to amenities exhibit strong
positive correlations; in Chicago, higher and lower income preferences for neighborhoods have a
correlation coefficient of 0.90. This level of correlation in NAQI values is representative of other
cities – the average within-CBSA correlation between higher and lower income NAQI values is 0.90
with a standard deviation of 0.05 (weighting by CBSA population).

To contextualize the magnitude of the correlation in preferences for neighborhoods, Table 3
documents the average value of moving from the 25th percentile neighborhood in the within-
CBSA distribution of neighborhoods for a given type to the 75th percentile in the within-CBSA
distribution of either the same income group (along the diagonal) or in the distribution for the
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opposite income group (on the off-diagonal). On average, higher-income residents value moving
from the 25th to 75th percentile in their own distribution equivalently to 78.2 minutes of weekly
driving time and to the 75th percentile neighborhood of the lower-income distribution equivalently
to 73.3 weekly minutes. Lower-income residents value moving from the 25th to 75th percentile
neighborhood equivalently to 71.7 minutes and value moving to the 75th percentile neighborhood of
higher-income residents equivalently to 67.0 minutes. Moving to the opposite device income type’s
25th percentile neighborhood is only 6-7% worse than moving to the 25th percentile neighborhood
of the given device type’s distribution of neighborhood values. However, these results do not
preclude higher-income residents from placing more absolute weight on the amenity value of a
neighborhood when choosing where to live. Given that higher-income residents visit 10-30% more
amenities of each category in a quarter, it would be sensible that they value amenity access more.
In the context of earlier findings on the role of amenities in the return of young, wealthy residents
to urban cores (Couture et al., 2019), the level of correlation observed here implies these trends are
likely due to higher income residents placing increasing weight on amenity access in recent decades
when choosing where to live, which may price out lower-income residents who place similar relative
value on the amenity access of the urban core but are unwilling to pay as much for amenity access
(Couture and Handbury, 2020).

Table 3: Value of moving from p25 to p75 neighborhood

Distribution of NAQI values for p75
Device type / p25 distribution Higher income Lower income

Higher income 78.22 73.28
[34.06] [34.27]

Lower income 67.03 71.66
[46.38] [44.97]

Note: This table documents the average value of moving from the 25th percentile neighborhood in a given within-CBSA
distribution of NAQI values to the 75th percentile neighborhood in the opposite income group’s distribution of NAQI
values. Units correspond to the value of a minute of driving time. The results are computed within CBSA and then
averaged across CBSAs using the total population as weight. The weighted across-CBSA standard deviations are in
brackets.

5.2.2 Characteristics of neighborhoods with high-value amenity access

What types of neighborhoods tend to have good access to amenities? I examine the relationship
between amenity access for each income group and neighborhood characteristics by running a series
of regressions of NAQI values on characteristics such as density, median household income, and rent.
Each regression uses data from all 100 CBSAs and includes CBSA fixed effects. The values for
non-logged variables correspond to a one standard deviation increase in the covariate.

The first three columns of Table 4 document the results for univariate regressions. Much as
Figure 5 demonstrated for Chicago, the two features most predictive of high-quality amenity access
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are population density and the distance to city hall. A doubling population density is associated
with a∼30 minute increase in the NAQI value of a neighborhood for each income group. Regressions
with either of these covariates have R2 values around 0.35. For both higher and lower income
residents, the value of a neighborhood’s amenity access is also increasing in rent and education
and decreasing in household income, fraction white-alone, and median age. Similar to the finding
in Figure 1 that higher-income residents have fewer establishments nearby, Table 4 documents
that the value of a neighborhood’s amenities is lower in higher-income neighborhoods. The third
column shows that the absolute gap between higher and lower-income residents—a measure of
‘disagreement’ over neighborhood quality—tends to be lower in dense neighborhoods that are closer
to city hall and higher in more white, younger neighborhoods.

Many of the covariates are correlated with density. The latter three columns control for log
density and log distance to city hall. With these controls, neighborhoods with higher income, rent,
college graduates, and more white or older residents tend to have higher quality access to amenities.
Despite the levels of positive correlation in NAQI values, some systematic differences do emerge.
Once controlling for density, the relationship between NAQI values and neighborhood income,
rent, fraction white, and median age is about twice as strong for higher-income residents than
lower income residents. For example, each standard deviation increase in neighborhood income is
associated with a 7.9-minute increase in NAQI value for higher-income residents versus 4.3 minutes
for lower income residents.

5.3 Counterfactual: tailoring amenities to higher income residents

A common concern with gentrifying neighborhoods is that the tailoring of amenities to higher-
income entrants will amplify the overall welfare inequality in the neighborhood by crowding out
amenities enjoyed by the lower-income incumbents. To evaluate the potential magnitude of welfare
effects through this channel, I simulate a counterfactual world in which the top 25% of establish-
ments for lower income residents within each subcategory are replaced with duplicates of the top
25% of establishments for higher-income residents. The new establishments are set in the same
location in the CBSA as the ones they replace, but I switch out the establishment-level preference
parameters for each income group with the parameters from the new establishments. Subcategories
with highly correlated preferences will have substantial overlap in the top 25% of establishments
for higher and lower income residents.

I find that this fairly extreme version of tailoring has a modest effect on the overall utility
residents derive from neighborhood amenities. In the average CBSA, a higher-income resident’s
utility increases by an amount corresponding to 18.1 minutes of weekly driving time, and a lower
income resident’s utility decreases by 21.4 minutes of weekly driving time. If residents have an
hourly value of time of $20, the changes in utility correspond to +$313 per year for higher-income
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Table 4: Relationship between NAQI values and neighborhood characteristics

Univariate Controls: density & city hall distance

Covariate H L |H − L| H L |H − L|

Log population density 29.5364 30.286 -3.5268
(SE: 0.174) (SE: 0.1729) (SE: 0.0771)
[R2: 0.3481] [R2: 0.3793] [R2: 0.3233]

Log miles to city hall -58.105 -55.9451 4.737
(SE: 0.2703) (SE: 0.269) (SE: 0.1265)
[R2: 0.3726] [R2: 0.3607] [R2: 0.3108]

Median income -4.311 -7.9668 0.2498 7.9316 4.3337 -1.2305
(SE: 0.1954) (SE: 0.1868) (SE: 0.0699) (SE: 0.1698) (SE: 0.16) (SE: 0.0777)
[R2: 0.0269] [R2: 0.0289] [R2: 0.2946] [R2: 0.4565] [R2: 0.4653] [R2: 0.322]

Median rent 4.5393 1.7062 -0.424 7.2876 4.4207 -0.7009
(SE: 0.2747) (SE: 0.262) (SE: 0.093) (SE: 0.2155) (SE: 0.2001) (SE: 0.0926)
[R2: 0.029] [R2: 0.021] [R2: 0.3133] [R2: 0.4444] [R2: 0.4471] [R2: 0.3367]

Frac. college grad 12.1012 7.0334 -0.1759 10.6795 5.9041 -0.2305
(SE: 0.1951) (SE: 0.1905) (SE: 0.0716) (SE: 0.1481) (SE: 0.1425) (SE: 0.0718)
[R2: 0.0476] [R2: 0.0269] [R2: 0.2982] [R2: 0.465] [R2: 0.4656] [R2: 0.3239]

Frac. white-alone -14.9958 -17.9177 1.8314 7.0405 3.4586 -0.3523
(SE: 0.2041) (SE: 0.1963) (SE: 0.0757) (SE: 0.1755) (SE: 0.1705) (SE: 0.0835)
[R2: 0.0586] [R2: 0.0714] [R2: 0.3011] [R2: 0.4527] [R2: 0.4611] [R2: 0.3239]

Median age -12.0876 -12.9717 1.2898 3.4936 2.8647 -0.5525
(SE: 0.2199) (SE: 0.2133) (SE: 0.0806) (SE: 0.1848) (SE: 0.1764) (SE: 0.083)
[R2: 0.0488] [R2: 0.0492] [R2: 0.2998] [R2: 0.4481] [R2: 0.4607] [R2: 0.3241]

Note: This table documents results from a series of regressions of the block group level NAQI values on characteristics of
the block group. Population and demographics data are from the 2019 5-year ACS. The distance to city hall is crow-flies,
based on the city hall location reported on Google Maps for the largest city in each CBSA. Regressions include fixed
effects for the CBSA. For non-log covariates, the values correspond to a one standard deviation increase.

residents and −$371 per year for lower income residents.20 In a similar exercise, Davis et al. (2019)
simulate replacing both restaurants and residents of neighborhoods surrounding majority-Black
Harlem with those from majority-white Upper East Side and find that the change in restaurant
prices and cuisines has only a small effect on welfare relative to the social frictions that arise with
the shift of surrounding residents from mostly Black to mostly white. Similar to their findings,
the results presented here suggest that the direct effect of amenities tailoring to higher income
residents on spatial inequality is relatively small thanks to the correlation in preferences for ameni-
ties; however, these partial equilibrium effects may be further amplified (or dampened) by general
equilibrium channels such as rent increases and residential re-sorting.

20Goldszmidt et al. (2020) estimate a value of time of $19 using variation in the wait times for Lyft rides.
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5.4 Robustness tests

I conduct a number of robustness tests that vary the definition of income and the sample of trips
used for estimation. For each each test, I use a subset of ten CBSAs sampled randomly from each
decile of CBSA population to limit the computational burden of re-estimating the entire set of
preferences.21 In Table 5, I report the correlation in establishment-level preferences, correlation in
NAQI values, and the results from the counterfactual tailoring to higher-income residents. The first
row documents the baseline results for these ten CBSAs, which are similar to the results presented
for the entire sample.

5.4.1 Alternative income groups

The first set of robustness tests varies the definition of higher and lower income. A concern with
using imputed income is that the correlation in estimated preferences will be sensitive to the level
of measurement error. At the extreme, if I were to assign income labels to devices randomly, then
I would find that preferences are perfectly correlated. To help address this concern, I use three
alternative definitions of higher and lower income. First, I forego the parcel-level income estimates
and instead use whether a device’s block group median income is above or below the median income
for the CBSA. Second, I again use the block group median household income but exclude devices
living in mixed-income block groups, which I define as having less than two-thirds of either income
group. Finally, I return to using parcel-level income estimates but define higher and lower income
based on being in the top or bottom tercile of income and exclude devices in the middle tercile.22

In each case, the story is similar: preferences for establishments are less correlated than prefer-
ences for neighborhoods and tailoring establishments to higher-income residents has a modest effect
on overall welfare. When using the tails of the income distribution, the correlation in preferences
falls, and the effects on welfare are amplified. The upper tercile of the income distribution values
the increased tailoring equivalent to 32.3 minutes of weekly driving time (+$559 per year), while
the welfare of residents in the bottom tercile declines by the equivalent of 50.71 minutes of weekly
driving time (−$878 per year). As we would expect, ‘higher income’ and ‘lower income’ residents
are not a monolith, and preferences at the tails of the income distribution are more polarized than
the preferences of residents in the middle tercile.

5.4.2 Subsets of amenity visits

The second set of tests uses specific subsets of visits to amenities. First, I re-estimate the model
using only the first visit to an establishment by each device (57% of all visits). The model assumes

21The ten CBSAs are, in order of population, Chicago-Naperville-Elgin, Seattle-Tacoma-Bellevue, Kansas City,
Cleveland-Elyria, New Orleans-Metairie, Albuquerque, Knoxville, Cape Coral-Fort Myers, Madison, and Durham-
Chapel Hill.

22Appendix Section A.2.4 provides details on how devices are split into income terciles.
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that each choice is made independent of other choices an individual has previously made; however,
an individual’s idiosyncratic draws for a given location are likely correlated across time. In a
similar model, Davis et al. (2019) shows that serial correlation in the idiosyncratic errors can lead
to attenuation bias in the coefficient estimates. In practice, subsetting to only the first trip by each
device has little effect on the bottom-line results.

Second, I subset to visits where both the previous and subsequent stops are at home (34%
of all visits) and set the disutility of driving time from work to zero. Individuals may combine
multiple stops into a single trip to amortize the disutility of travel time. Treating each stop as an
independent trip would bias upwards the estimated value of an establishment that is frequently
visited as part of a chain of trips (e.g., an ice cream shop next to a group of retail stores). Using
only trips that start and end at home reduces both the correlation in preferences and the effect
on the welfare of tailoring establishments to higher-income devices. However, these differences
appear to be primarily driven by the small sample size, introducing additional measurement error
in establishment-level preferences. When using a random third of trips (the final row), the results
are similar to when using only the trips that start and end at home. In Appendix Section A.1.4, I
discuss the difficulties with identifying chains of trips to multiple establishments in GPS data.

Table 5: Robustness tests

Establishments corr. NAQI corr. Tailoring counterfactual

Unweighted Weighted All Lower income Higher income

Baseline 0.634 0.805 0.914 19.19 -24.26
Alternative income measures
Block group income 0.645 0.803 0.899 19.33 -30.34

Block group income, excluding
mixed-income block groups

0.403 0.612 0.855 32.27 -50.71

Top and bottom income
terciles

0.470 0.674 0.843 23.26 -44.45

Subset of visits
First trip to establishment
by each device

0.621 0.787 0.861 22.10 -17.85

Trips that start and end
at home

0.480 0.730 0.924 7.69 -8.94

Random subset of one-third
of trips

0.407 0.709 0.840 11.82 -10.66

Note: This table documents the results of a battery of robustness tests. The tailoring counterfactual involves replacing the
top 25% of establishments for lower income residents in each subcategory with replicas of the top 25% of establishments
for higher-income residents. The units are minutes of weekly driving time.
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6 Conclusion

This paper studies heterogeneity in preferences for neighborhood amenities at two levels: 1) prefer-
ences for individual establishments and 2) preferences for neighborhoods’ overall access to amenities.
At the establishment level, I find that higher and lower-income residents have positively correlated
preferences for all 45 different subcategories of amenities; however, preferences are more correlated
within some types, such as malls and general merchandise stores, than others, such as many personal
services. For amenities where preferences are less positively correlated, there is more scope for new
establishments in gentrifying neighborhoods to tailor to the preferences of the newer, higher-income
residents to the detriment of the incumbent, lower income residents.

At the neighborhood level, preferences exhibit a strong positive correlation. While higher and
lower income residents may disagree about which restaurants they prefer, for example, they tend to
agree on which neighborhoods offer the best access to amenities. Neighborhoods with high-quality
amenity access tend to be denser, closer to the urban core, younger, higher education, and with
higher rents.

Two key margins are not addressed in this paper: 1) the supply-side decisions of local ameni-
ties and 2) the effect of local amenities on housing markets and residential choices. Researchers
interested in the latter question may find value in the estimated NAQI values, which summarize
the quality of each neighborhood’s access to amenities. For example, these can serve as an input
into models of residential choice to study heterogeneity in preferences for living in neighborhoods
with better access to amenities.
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A Data appendix

A.1 GPS location data

A.1.1 Pre-processing: from pings to stays

A raw GPS trace consists of many ‘pings’ attached to a single device. Pings can be triggered either
by a user opening specific apps or via apps that share location data in the background. A year of
raw data includes over 700 billion pings. To reduce the size of the data while retaining the core
information, individual pings that are close together in time and space are collapsed into ‘stays’ by
Replica. A stay is composed of a unique device ID, enter time, exit time, latitude, and longitude,
For example, a visit to the supermarket may result in a hundred pings, all of which would become
a single stay.
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To construct stays at locations, pings are combined using an algorithm based on the ST-
DBSCAN clustering algorithm, which can discover arbitrarily shaped clusters of successive GPS
pings for a given user (Birant and Kut, 2007). The coordinates of a stay are the centroid of all
pings assigned to the same cluster by ST-DBSCAN. Pings that occur in transit between stays are
discarded.

A.1.2 Assigning home and work locations

For each day a device appears in the data, I use stays from the 28 days leading up to a given date
to assign a most likely home and—where applicable—work location as of that date.

Home assignment consists of three steps. First, I count all overnight (12-5am) stays by a device
in an H3 bound of resolution 9. H3 is a hierarchical spatial index, similar to geohashes. Bounds of
resolution 9 covers approximately 100 square meters. Second, I label the most common H3 bound
as the home bound, so long as it has at least five overnight dates. Finally, I identify the exact
coordinates of the home by taking the centroid of all overnight stays within the home bound.

Assigning workplaces is more complicated, as work shifts can occur at all hours of the day
and, for many occupations, may not involve a single location (e.g., plumbers, taxi drivers, and
appraisers). I assign works according to similar heuristics as homes: the non-home H3 bound with
the most daytime (6am-8pm) stays and average stay length of over 2 hours is labeled the work
bound of a device, and the coordinates are the centroid of all stays in this bound.

To determine the home and work locations at the device-quarter level, I use the most commonly
assigned home and work for all days for which a device had an assigned home and/or work in a
quarter. I exclude any device-quarters for which there is no reliable home location. Of device-
quarters with a home assigned, 67% are assigned a work location.23

A.1.3 Matching stays to location details

Stays are matched to details on the exact location—where available—using Point of Interest (POI)
data from SafeGraph. SafeGraph aggregates standardizes, and validates data from many vendors
and open-source maps on different POIs, which include consumer-facing businesses, schools, parks,
hospitals, places of worship, and more.

Each location is also associated with a polygon of its footprint. I use these footprints to match
stays to POIs, matching on whether the stay’s coordinates are within the polygon during the
establishment’s open hours. These polygons are not always disjoint so that a single stay may
match to multiple locations. There are three primary cases when polygons may overlap. First,
when a location is entirely enclosed in another and does not have its own polygon, such as a store
in a large mall. In this case, I assign the ‘parent’ location (i.e. the mall) rather than attempting

23This method for assigning works has drawbacks and cannot identify workplaces for occupations that do not
involve a static location (e.g., Uber drivers and mail carriers) or for workers that work night shifts.
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to identify the individual location. Second, stores within a ‘parent’ polygon may have their own
individual polygons in the data (e.g., a shopping center where stores are more easily separated). In
this case, the staypoint will match both the parent as well as the individual polygon—since these are
overlapping polygons—but the data are sufficient to discern which store within the parent location
was visited, so I assign the individual location. Finally, polygons may overlap due to being stacked
in multi-story buildings or simply due to noise in the polygon data. In this case, I randomly assign
a polygon among the matching set. Of the stays matched to at least one Safegraph POI, 74.3%
either match to a single location or a single non-parent location, 9.0% are matched to a parent
location, and the remaining 16.7% are randomly assigned a polygon from the set of matches. I
exclude visits to POIs that are at a device’s home or work location.

Each location is classified into mutually exclusive subcategories of amenities. I use SafeGraph’s
assigned NAICS code to classify each POI in the data. One exception is malls, which do not have
a corresponding NAICS code but are the ‘parent’ POI for many smaller establishments – I use
SafeGraph’s ‘Lessors of Real Estate’ category to identify Malls. Finally, I drop establishments with
fewer than five observed visits. Table A1 documents the subcategories, NAICS codes, and the
number of POIs.

A.1.4 Trip chains

In modeling amenity consumption, I consider each choice to visit an amenity in isolation. In reality,
individuals may combine many stays at different POIs into a single ‘trip,’ allowing them to amortize
the cost of driving across multiple stops. This simplification could lead to overestimates of the value
of locations that are often combined with other stops. In this section, I examine the frequency with
which trip chains are observed. Even for devices with fairly reliable coverage, I find that the vast
majority of trips consist of only a single observed stop at a POI.

I combine stays at amenities into ‘trips’ by labeling a stay to be the start of a new trip of 1)
the stay is at a POI that is not home or work and 2) the previous stay was at either home or work
or the time between stays was over two hours. This final restriction is to exclude potential trips
with large gaps between stays, which is more likely to be due to issues with GPS coverage than
long travel times between locations. This definition identifies 165.0 million trips with an average
length of 1.10 stays at POIs.

Figure A.1 Panel (a) plots the distribution of number of POIs visits in a trip – 91.5% of trips
consist of a single stop. Panel (b) plots the distribution again, this time breaking out by quartiles
of device coverage. I define coverage at the device-week level as the sum of all time observed in the
given week – on average, the top quartile of device-weeks is observed for about 83% of all minutes
of the week, while the bottom quartile is observed for about 11%. For devices in the top quartile
of coverage, 89.5% of chains consist of a single stop, compared to 94.7% of trips in the bottom
quartile.
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Table A1: Categories and subcategories of amenities

Top 100 CBSAs Driving time (home)

Sub-category name NAICS codes # POIs # choices p25 p50 p75

Restaurants
Full-service 722511 315056 13403993 10.1 15.7 23.8
Limited-service 722513 146561 4004882 9.4 15.0 23.4
Cafes; snacks 722515 95190 2547540 9.2 14.9 23.3
Drinking places 722410 47643 2261690 10.0 16.7 25.8
Shops
Gas stations, convenience 4471, 445120 99360 4676792 9.0 15.3 24.9
Clothing, shoes 4481, 4482 95253 2199797 10.4 16.5 25.1
Grocery stores 445110, 4452 81533 4146230 8.0 12.4 19.5
Sporting goods, hobby, music 4511 54032 1236785 10.5 16.3 24.6
Automobile dealers 4411, 4412 50172 2332453 12.0 18.6 27.4
Furniture, furnishings 4421, 4422 48845 1197002 11.2 17.5 26.4
Building materials, gardening 4441, 4442 41531 2746107 9.8 14.3 21.1
Beauty, glasses, personal care 446120, 446130, 446190 40071 1635234 9.9 14.8 21.9
Pharmacies 446110 39857 1849610 8.4 13.6 21.2
Beer, wine, liquor, tobacco 4453, 453991 38261 730683 8.9 14.4 22.3
Electronics, appliances 4431 29603 603816 10.3 16.4 25.0
General merch., warehouse clubs 4523 26072 6032372 9.4 13.8 19.8
Jewelry, luggage, leather 4483 25605 646372 9.6 15.7 24.3
Malls N/A 25145 78953287 9.7 14.5 21.6
Used merchandise 4533 23245 630241 9.4 14.8 22.5
Office supplies 4532 22407 440852 10.4 16.7 26.0
Department 4522 10324 1235584 9.4 13.6 19.8
Books, news 4512 8335 207113 9.9 15.7 23.8
Personal services
Salons, barbers 8121 287677 6271867 9.0 14.1 21.4

Mechanics 811111, 811112, 811113, 811118,
811121, 811122, 811191, 811198 142078 1011801 9.0 15.1 23.9

Religious organizations 8131 127007 3985066 9.4 15.0 22.2
Other health practitioners 6213 123280 2056482 10.2 15.9 23.7
Banks 5221, 5223, 5231 119383 2518547 8.6 13.9 22.1
Dentists 6212 112700 1742965 9.8 15.4 23.2
Telecom 5173 31577 445421 9.5 14.7 22.2
Accounting, taxes, payroll 5412 30317 380276 9.9 15.7 23.9
Hospitals 6221, 6214 29705 10040470 11.9 18.3 27.1
Car washes 811192 15835 191638 8.7 13.8 22.3
Drycleaning, laundry 8123 11258 211991 7.3 12.3 19.8
Entertainment
Fitness centers 713940 78147 4839492 9.1 14.3 21.9
Parks 712190 76062 16955117 7.9 14.7 25.1
Other amusement, recreation 713990 16312 679272 9.3 16.1 25.5
Golf courses 713910 9847 6833737 5.5 14.0 24.6
Museums, zoos, gardens 712110, 712130 7526 252688 13.0 21.2 32.0
Libraries 519120 7220 480875 7.9 12.4 19.3
Movie theaters 512131 6307 998776 11.2 16.4 23.6
Amusement parks 7131 4452 891530 14.1 23.3 36.6
Performing arts 7111, 7113 3411 847696 14.0 22.2 33.0
Spectator sports 7112 2999 1300992 15.1 23.4 34.1
Bowling 713950 2620 538098 10.9 16.2 23.5
Gambling 7132 1059 983991 15.4 23.4 35.5

Note: This documents the categories and subcategories of amenities, the NAICS codes used to identify each subcategory,
and the total number within the top 100 CBSAs. NAICS codes are provided by SafeGraph. To identify malls, I use
SafeGraph’s category ‘Lessors of Real Estate.’ Driving time is between the home block group of the device observed
visiting the establishment and the block group of the establishment.
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Figure A.1: Distribution of # stops in chain
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Note: These figures document the distribution of the number of stops at different POIs within a single trip, where a new
trip begins if a device stops at home or work or it has been at least 2 hours since the device left the previous POI.

A.2 Estimating individual income

I use parcel-level data to estimate whether or not a device residing at that parcel is above the
median income for the CBSA (‘higher income’).

At a high level, the procedure is as follows:
1. Match each device to a home parcel using data on parcel polygons and CoreLogic parcel

characteristics
2. Use data on historical transactions to estimate the 2019 market value of all houses
3. Model the probability that a device-holder is above median income based on their home’s

market value, location, and characteristics using the 2019 5-year ACS microdata
4. Bayesian-update the probability of higher income using the distribution of home block group

income in the 2019 5-year ACS tabulations
Each step is described in more detail below.

A.2.1 Matching devices to houses

I match each device to residential parcel polygons provided by LandGrid by spatially joining each
set of home coordinates to parcel data. I use a strict match and only include those home coordinates
that fall within the bounds of a residential parcel.

Next, I match LandGrid parcels to housing characteristics provided by Corelogic. There are
two main data sources from CoreLogic: characteristics of a given house from tax assessments filed
with local governments (“Tax”) and details of each sale of a house from the deed filed during the
sale (“Deed”). Most of the Tax data is from the 2018 tax year, while the Deeds extend through
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June 2019. To match Landgrid parcels to CoreLogic details, I use the coordinates provided by
CoreLogic and again spatially join to the polygon from Landgrid.

In total, 73.2% of device homes match to a parcel with CoreLogic characteristics. The majority
of the remaining devices were not successfully matched to any residential parcel (e.g., their ‘home’
coordinates may have been on the street if home identification was noisy for that device).

A.2.2 Estimating market value of homes

To predict the value of a given device’s home, I build a model for estimating the 2019 market value
of all housing units in the US (not just those with a matched GPS device). The model is trained on
data on actual housing sales from Corelogic, then used to predict out-of-sample using the location
and characteristics of all homes, even those for which I never observe a sale.

I focus on predicting the value of single-family houses, townhouses, and condos; large rental
apartment buildings are, for now, set aside. There are 104.1 million properties in the Tax data for
which I will ultimately predict the 2019 market value.

To build a training sample, I match each house in the Tax data to any sales between 2010-
2019 in the Deed data. I restrict the sales data to arms-length transactions and remove all homes
purchased by an owner with ‘LLC’ in the name, as they often involve purchases of many units
that have sale prices corresponding to the total purchase rather than each unit. Finally, I further
restrict to houses sold at prices between $10,000 and $25,000,000. The final data include 27.99
million sales.

The Tax data include many characteristics of the property, including: number of bedrooms
and bathrooms; living, garage, basement, and land square footage; the style of the building, when
it was built, and whether refurbished; a measure of quality (e.g. ‘Fair’); what type of view the
property has (e.g., ‘Mountains’) and other ‘location influences’; whether the property has a pool;
the type of air conditioning, heating, fuel, framing, walls, sewage, water, roof, and floor; and the
precise location. Some of these variables are frequently missing – in all such cases, I replace the
missing values with an indicator for missing data. I also discretize continuous variables, such as
living square footage, into deciles.

To predict the market value of all homes, I train a deep neural net (DNN) on 80% of all
sales, setting aside the remaining 20% to evaluate model performance. First, I turn all of the
characteristics of the property and the time of the sale into features. Many of these characteristics
are high dimensional; for example, there are 87 unique styles of houses and 287 types of exterior
walls. For sale year, sale month, property type, decade built, decile of living square feet, and whether
there is a pool, I encode the values using dummy variables. For the remaining characteristics
described above, I use embeddings. Embeddings are an alternative to dummy variables – rather
than mapping a unique value to a vector of 0s and a single 1; they map each unique value to a vector
of continuous values whose weights are learned through the model training. Using embeddings helps
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reduce the dimensionality and allows the model to discover similarities between categories (e.g.,
similar types of building styles). As a rule of thumb, I define the embeddings to have dimensionality
of half the number of unique values of a column, with a max of 500. I also use embeddings for the
Census tract in which the house is located. By using embeddings, the model can ‘discover’ that
two tracts (perhaps sharing a border) are quite similar; if the tracts are similar in their relationship
with the sale price, they will be close in the embedding space as well (i.e., their embedding vectors
will have similar values).

Figure A.2 describes the model architecture. I use five hidden linear layers with rectified linear
units (ReLUs) as activation functions between each layer and batch normalization to increase
stability. I apply a sigmoid function to the final output to restrict estimates to be between 70%
of the lowest observed sale price and 130% of the highest observed sale price. The model is built
using PyTorch and run on GPUs. I train the model on each state’s data separately for 100 epochs
with batches of 256 sales (i.e. 100 runs of the full data through all steps of the model architecture
by batch, with parameters updating after each batch). I use an Adam optimizer with a cosine
annealing learning rate, such that the learning rates starts high and then decreases following a
half-cosine curve.

Figure A.2: Model architecture

Table A2 compares the performance of the DNN on the 20% validation sample compared to the
performance of a simple linear regression model for sales in California. For the linear regression,
features are encoded as dummy variables instead of embeddings, and for computational purposes,
zip codes are used rather than the more granular Census tracts. The first two columns display the
root mean squared log error in training and testing samples. The similarity between training and
testing samples suggests the model is not overfitting, and the lower value compared to the linear
regression indicates the superior fit of the DNN with embeddings over the linear regression with
all dummy columns. As a second measure of model fit, I look at the percent of homes for which
the predicted sale amount is in the same quartile, decile, or 25-tile of the actual sale amount. For
79.20% of homes, the predicted value is in the same quartile (compare to 51.64% for the linear
regression model and 25% if randomly assigned). Figure A.3 provides a visualization of how well
the model predicts the correct decile; rows are deciles of the predicted sale amount, columns are
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deciles of actual sale amount, and the color corresponds to the number of sales. A model that
could perfectly separate houses into deciles would be a diagonal line of dark squares. In general,
the DNN is far closer to this ideal than the linear regression and is only infrequently off by more
than a decile.

Table A3 reports similar statistics for all other states modeled using the DNN. On average,
65.38% of houses in the testing sample have predicted sales amounts that are in the same within-
state quartile as the true sale amount.

Finally, for all 104.1 million properties in the Tax data—even those that did sell—I predict the
market value based on the property characteristics and assuming a June 2019 sale date.

Table A2: Comparing models: California

Root mean squared log error % in correct p-tile

Training Testing Quartiles Deciles 25-tile

Deep neural net 0.6055 0.6161 79.20 54.32 28.72
Linear regression 0.7145 0.7130 51.64 25.32 11.36

Note: This table compares model performance between the neural net with embeddings and a linear regression with all
categorical variables represented as dummies. The results shown are just for sales in California. ‘Training’ refers to the
80% of data used to train the model, and ‘testing’ refers to the 20% set-aside. The % in the correct p-tile is based on the
testing sample and is defined as the percent of houses for which the p-tile of the predicted sale amount is the same as the
p-tile of the actual sale amount.

Figure A.3: Deciles of true v. estimated sale amounts: California
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(b) Deep neural net
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Note: These figure shows the out-of-sample quality of different models for California by highlighting the percent of
predicted sale value deciles that match the actual sale value.

A.2.3 Estimating whether above median income using home characteristics

I use data from the 2019 5-year ACS Public Use Microdata Sample (PUMS) to model the relation-
ship between housing characteristics and income. I then use this model to predict whether a device
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Table A3: DNN performance: all states in sample

Sample size Root mean squared log error % in correct p-tile

State Num. homes Num. sales Training data Testing data Quartiles Deciles 25-tiles

Alabama 1,888,962 387,858 0.6859 0.7070 51.39 26.11 12.10
Alaska 236,172 55,985 0.4057 0.4393 62.97 35.57 16.96
Arizona 2,236,852 891,688 0.4986 0.5006 67.90 39.79 19.77
Arkansas 1,194,026 273,041 0.7086 0.7141 56.13 29.69 13.69
California 9,568,480 3,033,246 0.6055 0.6161 79.20 54.32 28.72
Colorado 1,887,238 707,054 0.4843 0.5008 74.09 47.23 23.89
Connecticut 1,119,230 281,333 0.5907 0.6044 67.38 39.99 20.07
Delaware 344,763 81,055 0.5627 0.5539 61.95 33.59 15.97
District of Columbia 153,194 48,502 0.4193 0.4122 70.74 42.34 21.03
Florida 7,427,890 2,729,955 0.7170 0.7273 62.61 34.39 16.88
Georgia 3,588,908 927,570 0.8304 0.8452 53.31 27.73 13.29
Hawaii 435,009 116,236 0.4579 0.4869 73.49 46.99 23.63
Idaho 649,577 158,018 0.5303 0.5226 54.60 27.38 11.96
Illinois 4,016,897 1,140,526 0.6637 0.6896 64.39 35.82 17.33
Indiana 2,314,467 555,692 0.7905 0.7926 49.44 25.00 11.79
Iowa 1,251,933 325,829 0.8950 0.8890 51.79 25.28 11.29
Kansas 949,340 170,364 0.5293 0.5331 66.54 37.79 17.58
Kentucky 1,706,493 375,699 0.6076 0.6183 58.41 31.07 14.31
Louisiana 1,650,607 319,622 0.7391 0.7551 51.40 26.18 12.03
Maine 539,490 77,963 0.5697 0.5795 51.78 25.87 11.47
Maryland 1,919,137 544,304 0.5175 0.5165 70.34 42.88 21.89
Massachusetts 2,011,990 575,758 0.4893 0.4904 70.40 42.35 20.79
Michigan 3,925,464 996,063 0.7569 0.7735 55.14 28.70 13.32
Minnesota 1,917,659 593,594 0.5973 0.6096 59.56 32.23 15.15
Mississippi 1,205,515 72,095 0.6694 0.6533 58.14 28.76 12.25
Missouri 692,697 88,942 0.5524 0.5698 56.43 30.63 14.27
Montana 386,693 77,779 0.5125 0.5168 54.26 27.72 12.38
Nebraska 661,336 196,668 0.5055 0.5245 66.86 39.60 19.29
Nevada 919,364 387,895 0.4890 0.4842 73.63 46.36 23.46
New Hampshire 527,069 132,949 0.5176 0.5277 58.82 31.60 14.97
New Jersey 2,548,556 730,375 0.5079 0.5276 68.90 40.05 19.53
New Mexico 696,968 113,863 0.6867 0.6849 48.15 23.34 10.53
New York 4,594,929 1,193,795 0.6376 0.6486 71.73 42.34 19.92
North Carolina 3,922,110 923,345 0.6156 0.6287 65.55 37.58 18.18
North Dakota 219,117 61,043 0.6745 0.6766 53.03 24.86 10.53
Ohio 4,045,159 1,090,874 0.5811 0.5892 61.93 34.37 16.57
Oklahoma 1,562,997 368,883 0.6125 0.6380 63.22 35.63 17.05
Oregon 1,355,705 452,541 0.4698 0.4800 69.31 41.16 19.73
Pennsylvania 4,402,072 1,064,641 0.5576 0.5705 62.96 35.42 17.40
Rhode Island 329,573 84,482 0.5070 0.5126 61.85 34.13 16.40
South Carolina 2,008,807 493,926 0.7231 0.7240 52.96 27.05 12.85
South Dakota 272,046 34,026 0.6346 0.6490 56.81 28.38 12.87
Tennessee 2,702,028 735,374 0.6359 0.6534 64.02 36.33 17.84
Texas 8,281,129 1,727,422 0.8504 0.8468 60.17 32.78 15.03
Utah 862,770 257,946 0.4857 0.4937 61.81 33.30 15.45
Vermont 254,667 76,678 0.8029 0.8178 48.19 23.49 10.52
Virginia 3,154,047 803,333 0.6482 0.6639 75.15 49.39 26.00
Washington 2,370,843 772,662 0.5926 0.6002 70.64 42.72 21.29
West Virginia 726,247 41,956 0.9613 0.9440 51.59 25.03 9.33
Wisconsin 2,209,251 605,939 0.7468 0.7511 50.94 25.14 11.17
Wyoming 209,870 35,451 0.5115 0.5225 57.17 30.45 14.37

All 104,055,343 27,991,838 0.6422 0.6522 64.62 37.50 18.39

Note: This table documents performance for each US state for which I have housing data. ‘Training’ refers to the 80% of
data used to train the model, and ‘testing’ refers to the 20% set-aside. The % in the correct p-tile is based on the testing
sample and is defined as the percent of houses for which the p-tile of the predicted sale amount is the same as the p-tile of
the actual sale amount.
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is above median income for their home CBSA using the characteristics of the parcel in which they
reside as well as the overall income distribution of their block group.

I first harmonize the ACS and Corelogic characteristics, such that a model can be trained on
the ACS data and evaluated on Corelogic data. I use up to four characteristics of each home: its
location (Public Use Microdata Area), the number of units in the building, the decade built, and
its estimated home value. In the ACS, households self-report their home value (‘valueh’) or the
rent they pay (‘rentgrs’). In CoreLogic, I observe only estimated home value and not whether the
landlord or renters occupy the parcel. To address this, I use the within-CBSA decile of either home
value or gross rent (whichever is available) instead of the actual estimated market value. This
approach is equivalent to simply using the decile of home value if rents are set as a CBSA-wide
multiplier on the home value.

I use a common machine learning classifier, XGBoost, to estimate whether a household is
above median income in the ACS data (Chen and Guestrin, 2016). I train three versions of this
model, for varying levels of data availability: 1) using all four characteristics described above, 2)
using just home value/rent deciles and the PUMA, and 3) using just the decade built, units, and
PUMA. Each feature enters as a set of dummy variables, and I allow XGBooost to determine which
interactions are important. I weight each household according to the household weights provided in
the ACS. Evaluated on a holdout sample, the three versions of the model correctly predict whether
a household is above median income for 68.4%, 66.7%, and 65.1% of households, respectively.
The relatively low precision indicates that there remain many unobservables that contribute to
household wealth beyond a home PUMA and housing characteristics, which motivates the value of
using block group level income distributions to Bayesian-update the baseline predictions. I discuss
this further below.

I take the model estimated on ACS data to the CoreLogic data and predict the probability
that residents of each parcel are above median income based on the available parcel characteristics.
When the parcel does not have an estimated home value—e.g., for a large apartment building with
many units—the probability that residents are above median income depends on the age of the
building, number of units, and PUMA.

The ACS PUMS data includes only the PUMA of the household, but in the parcels data I
can observe the exact location. To incorporate this information into the estimates of whether a
device is higher income, I use the 2019 ACS 5-year block group income distributions to identify
where above/below median income households live within the PUMA. I then use this to update
the baseline probability that a parcel’s residents are above median income using Bayes rule. In
particular, for a tenant living in a parcel with characteristics x in block group g, I evaluate the
probability they are above median income (H) as

P [H | g, x] = P [H | x]P [g | H]
P [H | x]P [g | H] + P [L | x]P [g | L]

43



where L denotes below median income and P [g | H] is the within-PUMA probability that a
household of type H lives in block group g.

Finally, I use the mapping of parcels to devices to assign a probability of being above median
income to each device. ‘Higher income’ devices are those for which the probability of being above
median income, based on their home parcel, is at least 50%. In total, I am able to generate a
prediction of device type for 97.8% of the devices matched to a CoreLogic parcel.

A.2.4 Estimating a continuous measure of income

For robustness tests, I define higher and lower income devices based on being in the top or bottom
tercile of the within-CBSA income distribution. To divide devices into terciles, I estimate their
income in levels following a similar procedure to the above. First, I estimate the relationship
between household income (y) and housing characteristics (x) in the ACS. I use the same features
as before but now use Ordinary Least Squares instead of an XGBoost classifier for estimation. Using
the estimated model, I compute the predicted income as well as the variance of the prediction error
for each parcel in Corelogic. Assuming the error is normally distributed, this provides an initial
probability density function p(y | xi) for parcel characteristics xi.

Next, I update each income estimate using the distribution of household income for the cor-
responding block group. This will push the initial income estimates towards the average income
of the corresponding block group, with larger changes for more noisy estimates of income. The
ACS provides block group counts of households in 16 different bins of household income, ranging
from $0-$10,000 to >$250,000. Define h(b | xi, wi) as the probability a household’s income is in bin
b ∈ B given parcel characteristics and home block group wi. Under the assumption that the block
group income distribution g(b | wi) and the estimated distribution based on parcel characteristics
p(y | xi) are independent, h(b | xi, wi) is given by

h(b | xi, wi) =
g(b | wi)

´ b̄
b p(y | xi)dy∑

b′∈B

[
g(b′ | wi)

´ b̄′
b′ p(y | xi)dy

]
where b and b̄ are the lower and upper household income bounds of bin b. The final income estimate
is then a weighted average of bin midpoints with weights corresponding to the probability that the
residents of a given parcel have a household income within that bin:

ŷi =
∑
b

[
(b̄− b)

2 h(b | xi, wi)
]

(A.1)

Finally, to split devices into terciles, I define within-CBSA cutoffs using the distribution of estimated
income.
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A.3 Evaluating sample quality

Evaluating the sample quality is complicated by the lack of any ‘ground truth’ about the demo-
graphics of devices in the data. To provide some sense of coverage, I compare the inferred home
locations of device holders to the true population, using the 5-year 2019 American Community
Survey (ACS).

First, I compare the spatial distribution of the device sample to that of the total population.
While homes are re-assigned each quarter that a device is present in the data, for the purposes of
comparing to the Census I use only unique homes for each device (generally a single home). Figure
A.4 maps the ratio of devices to population for all the US counties in the sample. While there
is better coverage in some areas (e.g., Florida) than others (e.g., New England), in general, the
sample includes 5-10% of a county’s residents, with an average coverage of 7.07%.

Next, I zoom in to the Census block group level—each of which covers approximately 1,500
residents—and examine whether devices are disproportionately sampled from block groups with
certain demographics. To do so, I divide block groups into within-CBSA deciles by various charac-
teristics weighting by the population of each block group. Then, I compute the number of devices
with homes in block groups corresponding to each decile.

Figure A.5 plots the fraction of devices from each decile for block group population density,
median household income, the share of residents with a college degree, and the share of residents
who identify as white. If the sample were perfectly uncorrelated with these characteristics, then
10% of devices would come from each decile (corresponding to the dashed horizontal line). Instead,
devices in the sample, on average, come from lower-income, less educated, and slightly less white
block groups. One contributing factor is likely that Android devices are over-represented in the
GPS data. While the data I have do not include the device type, anecdotally, vendors have said
that iPhones are only 35-50% of their sample despite making up about 60% of US smartphones.
According to a survey, iPhone owners have incomes that are, on average, 43% higher than Android
owners (Slickdeals, 2018). Compared to the sample of devices used in Couture et al. (2021), this
sample is more evenly sampled across population densities but is less representative of neighborhood
income, education, and fraction white. These discrepancies in coverage motivate the use of sample
weights for all analyses.

B Model appendix

B.1 Overview of tensor-based estimation frameworks

PyTorch and its primary competing framework, Tensorflow (Abadi et al., 2016), are most commonly
used to estimate complex neural networks but can be applied to the estimation of many economic
models. These frameworks offer a number of advantages for when the data are too large to fit in
memory and the optimization process is too costly for more standard approaches, most notably
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Figure A.4: Device homes as a fraction of ACS population

Note: This figure maps the number of devices as a fraction of the total population for each county within a CBSA in the
sample.

methods for estimating the model while holding only small batches of data in memory at any time
as well as easy portability to estimating on Graphical Processing Units (GPUs).

The use of PyTorch and Tensorflow to estimate large economic models is relatively new to
the economics literature.24 At their core, these frameworks are solving a standard numerical opti-
mization problem – given some objective function, find the set of parameters that maximizes (or
minimizes) its value. In my setting, the objective function is the log-likelihood of observing visits
to specific establishments, but similar techniques can be applied to a GMM criterion.

PyTorch and Tensorflow offer a number of advantages over standard approaches to optimization.
First, these frameworks can easily scale to larger-than-memory data through ‘mini-batch gradient
descent’ learning algorithms. ‘Mini-batch’ refers to reading in small subsets of data into memory
at a time, evaluating the objective function on this mini-batch, updating the parameters, then
proceeding to the next mini-batch.

Second, for updating the parameters, these frameworks include many optimizers that rely on
only the gradient and avoid ever computing the Hessian. For models where the parameter space is
large, computing the Hessian becomes computationally infeasible. There are many gradient-based
optimizers designed to squeeze as much as possible out of the gradient alone; in my case, I use

24The only example I have encountered in the economics literature is Lewis et al. (2021), which discusses an MLE
estimator for BLP built in PyTorch.
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Figure A.5: Device sampling by block group characteristics
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Note: This figure shows the sampling of devices from block groups relative to a uniform sampling. Dots above the line
indicate that more than 10% of devices come from that block group. Deciles are calculated either within CBSA.

Adam, a popular optimizer that uses adaptive learning rates for each parameter and a weighted
average of gradients from past mini-batches to avoid over-shoot (Kingma and Ba, 2017). The mini-
batch gradient descent learning algorithms make it possible to estimate models when both the data
are too large to store in memory and the parameter space is too large to compute the Hessian
efficiently.

Third, these frameworks use ‘auto-differentiation’ to compute the gradient without being fed the
analytical form of the gradient or relying on numerical approximations. This is particularly useful
when training large neural networks, where the gradients are difficult to compute analytically and
numerical approximations accumulate substantial error; however, even in the case of a more simple
model, auto-differentiation can save the researcher time. For all its benefits, auto-differentiation
is also a limitation of these frameworks, as they can only optimize objective functions that are
constructed out of auto-differentiable building blocks. These building blocks include all the standard
matrix operations and elementary functions that can be linked together by the chain rule. Specific
problems, such as those that involve numerical integration or for-loops, may not be as amenable to
auto-differentiation; however, these frameworks are still young and the space of models they can
estimate is still being explored.
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Finally, estimation can be efficiently run on either CPUs or GPUs. GPUs, which are tradition-
ally used for powering graphics, excel at executing many small tasks (such as matrix multiplications)
in parallel. They offer substantial speed improvements over CPUs.

B.2 Estimation of the lower level of model

For each subcategory Bm, I use data on all visits to establishments within this subcategory to
estimate the establishment-level taste parameters and the disutilities to driving time from home
and work.25

I use a fixed choice set consisting of all establishments in a subcategory for which I observe
at least five visits in the data. For many subcategories, the choice sets are large; for example,
there are over 12,000 full-service restaurants in Los Angeles. I estimate the model by maximizing
the log-likelihood, based on the conditional probability of consuming at a specific establishment
within subcategory Bm defined in Equation 4.4. For estimation, I use a mini-batch gradient descent
algorithm built in PyTorch and run it on a virtual machine with 16 CPUs, 104GB of memory, and
1 Nvidia T4 GPU.

The estimation steps are outlined in Algorithm 1. Much like for the model to predict house
prices, I use an Adam optimizer with an initial learning rate of 5e-3, a cosine annealing learning
rate scheduler26, and a convergence tolerance of 5e-6. Adam uses only the current and historical
gradients to update parameters and adjusts the learning rates for each parameter separately (hence
the γ and κ superscripts on η in Algorithm 1). I weight the loss function by a given device’s
sample weight. To represent the fixed effects for the C different establishments in the choice set,
I use a 1 × C vector of embeddings rather than a one-hot encoding (‘dummy variables’). While
embeddings are usually used to model some latent space—see, for example, word2vec (Mikolov et
al., 2013)—they can also be used as a sparse way to represent high dimensional fixed effects. Given
the size of the choice sets, standard one-hot encoding would be infeasible in my setting.

There are a few cases—especially for the ‘Gambling’ and ‘Museums, zoos, gardens’ subcategories—
where a CBSA will have zero establishments and is therefore excluded from estimation.

B.3 Estimation of upper levels of model

I estimate the upper levels of the model using the aggregate number of visits a given device made
to each subcategory Bm at each time of week t within a quarter. The likelihood contribution of a

25There are a few cases of driving times being unreasonable long for within-CBSA trips, likely due to errors in the
router, so I top-code driving times at 90 minutes and include an indicator for whether a driving time was over 90
minutes.

26For more on the Adam optimizer, see Kingma and Ba (2017). Loshchilov and Hutter (2019) show that, even
with adaptive learning rate optimizers like Adam, it can still improve estimation to use a scheduled learning rate
multiplier, such as cosine annealing.
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Algorithm 1 Lowest-level estimation: mini-batch gradient descent
1: Initialize 1×C embedding vector to store establishment-level taste parameters (~γ) and a 1×12

vector of driving time from work and home disutility parameters (~κ)
2: while not converged and epoch ≤ maxEpochs do
3: Divide sample into mini-batches, each with 128 observed choices
4: for b ∈ mini-batches do
5: Expand each choice into the full choice set; compute driving time to each establishment
6: Compute predicted choice, ŷ, under current parameters (forward propagation)
7: Compute weighted cross-entropy loss for ŷ and true choices y, L (ŷ, y, deviceWeights)
8: Compute gradients using backpropagation (∇~γ, ∇~κ)
9: Update parameters using learning rates ηγt and ηκt

~γt+1 ← ~γt − ηγt∇~γt
~κt+1 ← ~κt − ηκt∇~κt

where t indexes ‘time’ as the current (epoch, mini-batch) pair
10: Check for convergence of loss function
11: Shuffle the data

vector ~niqt for arrival rate λkt is given by

P [~niqt] =
∞∑
a=0

P
[
a arrivals | λk(i)t

]
∗ P

[
~niqt | a

]

=
∞∑
a=0

[(λak(i)t exp
(
− λk(i)t

)
a!

)
∗
(

a!
niqt0!

∏
Bm

niqtBm !

)
∗
(∏
Bm

P
niqtBm
itBm

)(
P
nitq0
it0

)]

=
∞∑
a=0

[(λak(i)t exp
(
− λk(i)t

)
a!

)
∗
( (a− niqt0)!∏

Bm
niqtBm !

)
∗
(∏
Bm

P
niqtBm
itBm

)(
P
nitq0
it0

)]
(B.1)

where niqtBm indexes the Bm subcategory of ~niqt, PitBm is computed according to Equation 4.7,
Pit0 is the implied probability of consuming the outside option, and nitq0 is the implied number of
outside choices for a given number of arrivals a.27 To approximate the infinite sum, I compute the
summation for up to 100 arrivals – higher numbers of arrivals have probabilities that are extremely
small (i.e. too small for even a 64-bit floating point value to store). As only relative differences are
identified, I normalize the first coefficient for each vector of intercepts to be zero.

Devices are often observed in the data for a subset of the total quarter – without accounting
for this, the arrival rate would be conflated with device coverage. To address this issue, I compute
the number of unique days a device is observed in each quarter—whether or not they go to a
POI that day—and substitute in an individual level arrival rate λiqt in Equation 4.10, with λiqt =
λk(i)t ∗ numDaysiqt where numDaysiqt is the number of days device i is observed in quarter q at

27These are given by Pit0 = 1−
∑

Bm
PitBm and nitq0 = a−

∑
Bm

nitqBm
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time of week t. As such, λiqt can be interpreted as a daily arrival rate for each time of week (e.g.,
number of arrivals on a weekday evening).

For the upper levels of the model, I again use a mini-batch gradient descent learning algorithm
built with PyTorch to estimate the model.28 I use batch sizes of 128 device-quarters, an Adam
optimizer, and an initial learning rate of 1e-3. To help avoid finding only local maxima—the
objective function of a nested logit is not globally convex—I use a cosine annealing learning rate
scheduler that increases the learning rate every so often to try to jump out of any local maxima. In
testing, different initializations of the parameters led to similar final estimates. I train the model for
a maximum of 10 epochs, with a check for convergence. I use fewer epochs than in the lower level
because these models tend to converge far more quickly—usually after only a few epochs—thanks
to the smaller parameter space.

C Additional results

C.1 Preferences, exits, and gentrification

In this section, I show how establishment-level preferences affect the probability that an establish-
ment exits a neighborhood, split by whether or not the neighborhood is ‘gentrifying.’ I combine
data from SafeGraph and Yelp to infer whether an establishment closed. Yelp data is sparsely
available for many categories of amenities, so I focus specifically on restaurants, where the vast
majority of establishments have a Yelp page. SafeGraph flags that an establishment has likely
closed if it disappears from its underlying data sources for multiple months in a row. This method
is imperfect, so I additionally check whether the establishment is still open in Yelp.29 To be con-
servative, I exclude restaurants that either SafeGraph says are closed but Yelp says are open or
that SafeGraph says are open but that do not match to a Yelp page. I label as ‘closed’ only those
restaurants that SafeGraph labels as closed and Yelp does not list as still open. The final sample
includes 274,486 total restaurants, of which 30,175 closed (11%).

Next, I label each neighborhood as gentrifying or not. Gentrification is an ambiguous and often
politicized term, initially coined by Ruth Glass to describe the entry of educated, middle-class
residents (the ‘gentry’) to poor, working quarters of London (Glass, 1964). I follow Glaeser et al.
(2020) and use a discrete definition of gentrification based on a zip code’s initial condition and
subsequent increases in either rent or education. I categorize each zip code in a CBSA as one that
could potentially gentrify if it was in the top 25th percentile of poverty in 2013, and, among these

28In this case, more traditional optimizers would also work well, because both the parameter space and data are
far smaller.

29I pulled the Yelp characteristics used in analyses, such as price level, in October 2020. I checked whether an
establishment was listed as open on Yelp in August 2021. I cannot rely exclusively on the Yelp data, as the Yelp API
will generally only return details for establishments that are still open; when the API returns no result, it is unclear
whether the establishment is closed or simply never had a Yelp page. For restaurants, 33% of the establishments that
SafeGraph labels as having closed between January 2020 and August 2021 are still listed as open in Yelp.
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zip codes, categorize a zip code as having actually gentrified if its increase in either median rent
or fraction of residents with a college degree between the 2013 and 2019 5-year ACS was in the
top half of these potentially gentrifying zip codes. For 89% of zip codes, these two measures of
gentrification are equivalent.

I estimate the following linear probability model of exiting using OLS:

Exitj = gentrifyingz(j) × (γ̃jH + γ̃jL) + εj (C.1)

where Exitj is an indicator for whether establishment j exited, gentrifyingz(j) is an indicator for
whether zip code z(j) is gentrifying and γ̃jH and γ̃jL are establishment-level DTEs.

The estimated coefficients are presented in Table C1. The first three columns use the definition
of gentrifying based on increases in rent, while the latter three columns use the definition based on
increases in education. The results are similar for the two measures.

Table C1 documents four facts about preferences, gentrification, and restaurant exits. First,
restaurants that residents like are less likely to exit. The effect is largest for higher-income resident
preferences – a 10-minute increase in the higher-income DTEs of an establishment is associated
with a 1.9 percentage point decrease in the probability of exit (columns 1 and 4). Second, the
probability of exiting is larger for gentrifying neighborhoods, mirroring results in Glaeser et al.
(2020). In a gentrifying neighborhood, the average establishment is 1.3-1.5 percentage points more
likely to exit (columns 1 and 4). Third, resident preferences may matter slightly less in gentrifying
neighborhoods than in non-gentrifying neighborhoods, although the point estimates are small and
generally insignificant (columns 2 and 5). Finally, establishments liked more by higher-income
residents than lower income residents are less likely to exit a gentrifying neighborhood. For an
establishment where the gap between higher-income and lower-income residents is 10 DTEs, the
point estimates suggest that it is 0.5-0.7 percentage points less likely to exit if it is in a gentrifying
neighborhood than in a non-gentrifying neighborhood (columns 3 and 6).

The results provide some evidence of the endogenous response of a neighborhood’s set of ameni-
ties to changes in the local demographics. When higher-income residents value a restaurant more
than lower income residents, it is less likely to exit a gentrifying neighborhood. However, these
results should be interpreted with caution for a few reasons. First, the measure of exiting is imper-
fect and only available with any level of confidence for restaurants. Second, the January 2020 to
August 2021 period overlaps almost entirely with the COVID-19 pandemic, which hit restaurants
particularly hard. Finally, the measure of gentrification is based on historical changes to demo-
graphics; many establishments that were tailored to lower-income residents in these neighborhoods
may have already exited by 2020, which would mute the magnitude of the coefficients.
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Table C1: Preferences and exits: restaurants

Rent gentrification Education gentrification

(1) (2) (3) (4) (5) (6)

Intercept 0.1040 0.1040 0.1047 0.1038 0.1037 0.1044
(0.0007) (0.0007) (0.0007) (0.0007) (0.0007) (0.0008)

Gentrifying 0.0135 0.0146 0.0211 0.0148 0.0161 0.0225
(0.0015) (0.0015) (0.0032) (0.0015) (0.0015) (0.0034)

γ̃jH -0.0019 -0.0020 -0.0019 -0.0020
(0.0001) (0.0001) (0.0001) (0.0001)

γ̃jL -0.0010 -0.0011 -0.0010 -0.0011
(0.0001) (0.0001) (0.0001) (0.0001)

Gentrifying × γ̃jH 0.0002 0.0001
(0.0002) (0.0002)

Gentrifying × γ̃jL 0.0003 0.0004
(0.0002) (0.0002)

(γ̃jH − γ̃jL) 0.0002 0.0002
(0.0001) (0.0001)

Gentrifying × (γ̃jH − γ̃jL) -0.0005 -0.0007
(0.0002) (0.0002)

R2 0.0135 0.0135 0.0048 0.0136 0.0136 0.0049
N 277401 277401 277401 277401 277401 277401

Note: This table documents results from regressing whether a restaurant exited between Jan. 2020 and Aug. 2021 on the
estimated preferences for that restaurant. I exclude restaurants that either SafeGraph says are closed but Yelp says are
open or that SafeGraph says are open but that do not have a Yelp page. Gentrification is defined at the zip code level
based on being in the 25th percentile of poverty in 2013 and experiencing rent or education growth between 2013 and
2019 in the top half for these zip codes. All regressions include CBSA fixed effects. Standard errors are presented in
parentheses.

C.2 Tourist preferences

Many establishments cater to tourists, and an increase in the number of tourists to an area of the
city can affect its composition of amenities (Almagro and Domınguez-Iino, 2022). I re-estimate
the model for visitors to cities, using their overnight location within the city as their ‘home.’
I find that tourist preferences for both establishments and neighborhoods are more correlated
with higher-income residents than lower income residents. The average within-CBSA, within-
subcategory correlation in establishment-level parameters is 0.68 for tourists and higher-income
residents and 0.61 for tourists and lower income residents. The corresponding correlations for
NAQI values are 0.84 and 0.82. These results suggest that an increase in the number of tourists to
a neighborhood is more likely to benefit higher-income residents who have more similar preferences
to the tourists. However, the difference in correlations is small.

C.3 Additional tables and figures
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Figure C.1: Driving time coefficients
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Figure C.2: Access and consumption of local amenities

(a) Access to amenities from home
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(b) Driving time to amenities
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Note: This figure plots coefficients from a series of regression where the right-hand side is an indicator for whether a device
is above median income. Panel a) is at the device-quarter level and regresses the log number of establishments within
different lengths of driving time, controlling for the density of a device’s home block group and a device’s home CBSA.
Panel b) is at the visit level and regresses the log of driving times from home and work on whether the device is higher
income, with controls for a device’s home block group.
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Figure C.3: Access and consumption of local amenities (subcategories)
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Note: This figure replicates Figure 1 at the subcategory level; see the note on that figure for more details.
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Table C2: Top brands within each subcategory

Sub-category Highest (H - L) Highest (L - H) Top H Top L

Restaurants
Limited-service Einstein Brothers Church’s Chicken Red Robin

Gourmet Burgers
Chuck E. Cheese’s

Cafes; snacks Panera Bread Dunkin’ Freddy’s Frozen
Custard

Freddy’s Frozen
Custard

Full-service Zoë’s Kitchen Krystal Texas Roadhouse Texas Roadhouse
Shops
General merch., warehouse clubs Costco Wholesale

Corp.
Family Dollar
Stores

Costco Wholesale
Corp.

Walmart

Grocery stores Trader Joe’s Save-A-Lot Meijer Meijer
Gas stations, convenience Costco Gasoline Thorntons Love’s Travel Stops

and Country Stores
Love’s Travel Stops
and Country Stores

Automobile dealers Audi Mitsubishi Motors Toyota Toyota
Furniture, furnishings At Home Carpet One Floor

& Home
At Home At Home

Department Kohl’s Ross Stores Kohl’s Kohl’s
Office supplies Hallmark Cards Party City Staples Staples
Electronics, appliances Best Buy Cellular Sales Best Buy Best Buy
Building materials, gardening Ace Hardware Menard’s Menard’s Menard’s
Clothing, shoes DSW (Designer

Shoe Warehouse)
Rainbow Shops Marshalls Burlington

Sporting goods, hobby, music Dick’s Sporting
Goods

GameStop Hobby Lobby
Stores

Hobby Lobby
Stores

Personal services
Mechanics Christian Brothers

Automotive
Goodyear Auto
Service Centers

Mavis Discount
Tire

Safelite

Salons, barbers Massage Envy Regal Nails Salon
& Spa

SmartStyle Family
Hair Salons

SmartStyle Family
Hair Salons

Banks Charles Schwab ACE Cash Express First Convenience
Bank (FCB)

First Convenience
Bank (FCB)

Telecom Verizon Wireless Boost Mobile Verizon Wireless Verizon Wireless
Entertainment
Fitness centers Pure Barre Planet Fitness Lifetime Fitness LA Fitness

Note: This table documents which brands have the largest gaps in the preferences of higher (H) and lower (L) income
residents as well as the overall most liked brand for higher and lower income. I subset to just those categories for which
there are at least five brands with over 100 locations and consider only those brands that have at least 100 locations.
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Figure C.4: Correlation of establishment-level parameters
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Parks

Note: This figure shows the joint density of higher and lower-income residents’ establishment-level preferences for
establishments in different categories of amenities.
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Table C3: Upper-level estimation results

Higher income Lower income

Arrival rates (~λ)
Weekday morning 0.0764 0.072

[0.0092] [0.0062]

Weekday afternoon 0.121 0.1048
[0.0158] [0.0107]

Weekday evening 0.0952 0.0868
[0.0115] [0.0084]

Weekend morning 0.1208 0.113
[0.0128] [0.0108]

Weekend afternoon 0.1984 0.1757
[0.0219] [0.0167]

Weekend evening 0.1597 0.1489
[0.0164] [0.0138]

Measure of nest independence (~ρ)
Restaurants 0.5391 0.4982

[0.2386] [0.2473]

Shops 0.7801 0.8431
[0.1618] [0.153]

Personal services 0.9267 0.9307
[0.0984] [0.1031]

Entertainment 0.9622 0.9526
[0.112] [0.1037]

Note: This table the average arrival rates (~λ) and upper nest measures of independence (~ρ) for each income group. Recall
when interpreting arrival rates that they hold only up to the normalization of the outside option being zero at all times
of the week; a higher arrival rate may imply that arrivals are truly more common or that the outside option is more
valuable at that time. Each entry is an average across CBSAs, weighting by total population. Standard deviations are in
brackets.
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Figure C.5: Neighborhood values: Bay Area, Los Angeles, Boston

(a) Bay Area: Higher income (b) Bay Area: Lower income (c) Bay Area: (H - L)

(d) Los Angeles: Higher income (e) Los Angeles: Lower income (f) Los Angeles: (H - L)

(g) Boston: Higher income (h) Boston: Lower income (i) Boston: (H - L)

Note: This figure illustrates the estimated block group level neighborhood values in Equation 4.8 for a subset of CBSAs,
often zoomed in on the urban cores.
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