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Abstract

Cities provide access to stores, public amenities, and other people, but that access may
provide less benefit for lower-income and younger urbanites who lack money and means of easy
mobility. Using detailed GPS location data, we measure the urban mobility and experienced
racial and economic isolation of the young and the disadvantaged. We find that students in
major metropolitan areas experience more racial and income isolation, spend more time at home,
stay closer to home when they do leave, and visit fewer restaurants and retail establishments
than adults. Looking across levels of income, students from higher-income families visit more
amenities, spend more time outside of the home, and explore more unique locations than low-
income students. Combining a number of measures into an index of urban mobility, we find
that, conditional on income, urban mobility is positively correlated with home neighborhood
characteristics such as distance from the urban core, car ownership, and social capital.
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Significance statement. Are the benefits of living in a city conditioned by who a person is?
Density provides city-dwellers with access to amenities such as commercial centers, public goods,
and social infrastructure. Yet proximity may not translate into use, particularly for lower-income
youth, who lack funds and cars and whose highly local amenities may differ significantly from
those in wealthy neighborhoods. An alternative view is that those with a lower opportunity cost
of time are able to travel more and spend more time interacting with their urban environment. In
this paper, we use GPS data to test whether students—and lower-income students in particular—
seem to take as much advantage of the city as their older and wealthier counterparts.

1 Introduction

For over 50 years, social scientists have documented urban residential segregation (Kain, 1968;
Taeuber and Taeuber, 1969), and its pernicious effects, particularly for children (Brooks-Gunn et
al., 1993; Cutler and Glaeser, 1997; Sampson et al., 2002; Chyn and Katz, 2021; Chyn et al., 2023).
More recently, Athey et al. (2021) demonstrate that experiences are not perfectly delineated by
place of residence, finding that “experienced isolation” is far lower than residential segregation.1

Browning et al. (2022) similarly finds that Black youth experience more inter-racial interactions
than implied by residential location alone.

Interaction with a diverse set of people is only one potential benefit of urban life. In this paper,
we examine a range of outcomes, including racial and income-based experienced isolation, visits to
urban amenities, exploration of new places, and distance traveled, using a panel of location data
from GPS-enabled devices.2 We are particularly interested in the lives of younger urbanites, whom
recent work has suggested experience less economic upward mobility in denser urban areas (Chetty
and Hendren, 2018). At the same time, the past decades have seen a rise in income segregation for
households with children, but not for childless households (Owens, 2016).

We build a panel of location data from GPS devices and infer three characteristics for each
device: household income, race, and student status. To infer income, we follow Cook (2023) and
match each device to its home parcel, then use characteristics of the home (e.g., market value,
structure age, location) to predict income. For race, we follow Athey et al. (2021) and use whether
or not a device is from a majority non-Hispanic white block group to define “white” and “non-white”
devices. Finally, we define “students” as 16-18 year-olds attending school and infer student status

1The experienced isolation measure in Athey et al. (2021) builds on the “activity space” literature in sociology
(Wong and Shaw, 2011; Shelton et al., 2015; Wang et al., 2018; Beiró et al., 2018). This literature is surveyed in
Cagney et al. (2020). Most relevantly, Moro et al. (2021) uses GPS data to measure experienced income isolation
and explore its connections to the device’s overall mobility.

2Examples of previous applications of GPS location data include mobility during the COVID-19 pandemic (Chang
et al., 2020; Allcott et al., 2020; Couture et al., 2021; Chen et al., 2021), waiting times at voting polls (Chen et al.,
2019), knowledge spillovers between employees of different firms (Atkin et al., 2020), and demand for amenities (Athey
et al., 2021; Miyauchi et al., 2021; Cook, 2023).
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from whether the individual’s most common weekday location is a high school. For privacy reasons,
cellphone record providers remove anyone under 16 years of age. Importantly, this sample contains
a mixture of high school students, teachers, and staff, which likely attenuates the differences we
measure between students and adults, especially since U.S. teachers are disproportionately white
relative to their students.3 Nonetheless, we find consistent and significant gaps in the urban mobility
and isolation of students versus adults. We also perform several robustness checks, as well as a
back-of-the-envelopment bias correction that suggests the impact of teachers is small, in Appendix
Sections A and B.

We start by estimating the day-to-day experienced isolation across both race and economic lines.
Following the methodology of Athey et al. (2021), we find that students experience more racial and
income isolation than adults. Excluding time spent at home, the racial isolation of students is 21%
higher than that of adults in the one hundred largest metropolitan areas. The income isolation of
students 13% higher than that of adults, driven by the particularly high isolation of high-income
students. When we compare the larger and smaller metropolitan areas, we find that the student-
adult divide is much starker for the largest metropolitan areas. For example, the racial isolation of
students is less than 10% higher than adults in the smallest third of metropolitan areas, but 42%
higher in the largest third. One potential explanation for why cities provide benefits for adults
(Glaeser and Mare, 2001) but offer less upward mobility for students (Chetty and Hendren, 2018)
is that urban children lead more isolated lives than urban adults.

We next turn to broader measures of urban mobility and find a more complex picture. Relative
to adults, students spend more time at home and in their neighborhood, stay closer to home when
they do leave, and visit fewer restaurants and retail establishments. But students also explore a
greater number of unique locations, spend more time in parks and at civil, social, and religious
establishments, and spend more time in areas that are richer, more white, less polluted, and have
lower crime rates. The differences are often large. For example, students spend nearly 50% more
time in their local neighborhood and go to 10-20% fewer restaurants and retail establishments.

The connection between mobility and income is much stronger than the connection between
mobility and student status, with lower-income students appearing far less mobile than wealthier
students in every dimension. Students in the richest quartile of our sample take 57% more visits to
entertainment venues, 38% more visits to parks, and experience 54% more total unique locations
than students in the lowest income quartile. Higher-income students also spend three percentage
points less time at home and, when they leave home, travel further afield. These differences
attenuate when we control for the tract of residence, but even within a tract, higher-income students
are more mobile and take advantage of more urban amenities.

Finally, we investigate the correlation between urban mobility and neighborhood characteristics.
To simplify our analysis, we aggregate our various measures into a single urban mobility index. Even

3During the 2017-2018 school year, in public schools where the majority of students were Black, 54% of teachers
were white (Spiegelman, 2020).
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holding fixed a device’s estimated income, urban mobility is rising in median neighborhood income.
Urban mobility is lower in places that are more densely populated and closer to the city center, as
well as in places with greater transit access. In its current state, public transit in the U.S. does
not override other factors that limit urban mobility among people experiencing poverty. Urban
mobility is also higher in areas with greater social capital, as measured by Chetty et al. (2022a,b),
suggesting that places with residents who are more connected to urban assets in the physical world
also have greater connection across socioeconomic statuses in the virtual world.

While this work cannot speak to the long-run costs of urban isolation, we have documented that
students appear to live more isolated lives than their adult counterparts, especially in the largest
cities. Moreover, lower-income urbanites appear to make far less use of urban amenities, which are
themselves core benefits of urban life (Couture et al., 2019; Couture and Handbury, 2023). Wealth
appears to be a complement, rather than a substitute, for enjoying the pleasures of urban life.

2 Methods

2.1 GPS Mobility Sample

Location data. Our primary dataset is a panel of GPS locations for a sample of cell phones
from 2019. Access to the data is provided by Replica, an urban data platform. For each device,
we observe a unique identifier and a sequence of ‘stays’ at various locations. Each stay includes
the geographic coordinates, entry time, and exit time. We have no direct information about the
device’s user, so must infer whether a device is a student and any demographics, such as race and
income, using the location histories of the device. Devices are not uniformly sampled across space,
so we use sample weights based on a device’s home location to correct for unevenness in sampling.
We provided additional details on the data construction in Appendix A. To assuage concerns about
the representativeness of the GPS sample, we document in Section 3.3 that our sample replicates
time use patterns for students in the American Time Use Survey (ATUS) and in Section 3.4 that
we replicate travel patterns for youth in the National Household Transportation Survey (NHTS).
Both surveys have very small youth samples relative to our data. Our data is also able to add
significant detail on mobility patterns.

Identifying students. For each device quarter in the data, we identify "home" as a device’s most
common overnight location and ‘work’ as a device’s most common daytime non-home location. We
exclude devices for which we observe insufficient data to identify a work location.4 To label a device
as a student, we match "work" locations to the geographic parcels of public schools. We identify

4The vast majority of these devices have insufficient coverage in the data to identify a work location confidently;
the median excluded device had only nine observed stays in all of 2019. Other devices are either unemployed or
employed in occupations without a static work location, such as postal workers or taxi drivers. Among devices that
had an identified home location, those that were excluded from the sample lived in tracts that are slightly more
non-Hispanic white (68.8% vs 67.1%) and tracts with higher median household income ($79,653 vs. $75,397).
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the locations of high schools using data from the National Center for Education Statistics (NCES);
Appendix Section A.2 describes the matching process. We include only high schools, as our GPS
data are meant to exclude individuals under 16 years old. Appendix Figure A.1 shows that our
counts of students at a school are highly correlated with the enrollment reported in the NCES.

Our method of identifying students invariably captures teachers and staff. This adds noise and,
to the extent adults working at schools are similar to other adults, biases our measures towards
finding no differences between students and adults. However, there does appear to be signal in
the classification – for example, when examining the types of establishments they visit, we find
that "students" go to far fewer bars and beer/liquor stores than adults. We also do a back-of-
the-envelopment bias correction for some results that suggests the impact of teachers is small, in
Appendix Section B.

Inferring income and race. We match each device to its home parcel and use parcel level
estimates of household income from Cook (2023). The estimates are computed in two stages. First,
Cook (2023) matches each parcel to data on housing characteristics from Corelogic, including
building age, type of building (e.g., single versus multi-family), and a prediction of its current
market value. Based on the relationship between housing characteristics and household income in
the American Community Survey (ACS) Public Microdata Sample (PUMS), an initial estimate
of household income is formed for each device. One limitation of the ACS PUMS data is that
only the Public Use Microdata Area (PUMA) of each home is observed, rather than more granular
geographic identifiers such as home block group. To improve estimates using the more granular
geographic data available in the GPS data, a second step is performed in which each estimate is
updated using an empirical Bayes procedure based on the distribution of household income within
the device’s home block group.5

Following Athey et al. (2021), we classify devices as either a "white device" (WD) or "non-white
device" (NWD) based on whether or not their home block group is majority white (non-Hispanic).6

Using only these two broad classifications of race will mask substantial heterogeneity by race and
ethnicity; however, because of the measurement error inherent in using home geography to impute
race, we do not attempt to further divide devices based on ethnicity or more granular races. Even
with this broad classification of race, our measure will frequently misclassify white individuals as
non-white devices and vice versa; the average home block group for WDs is 78.5% white, while the
average home block group for NWDs is 21.0% white.

Final sample. To focus on urban environments, we look only at devices living within the one
hundred most populous metropolitan Core-Based Statistical Areas (CBSAs). The smallest CBSA

5For the full details on the income imputation, refer to Appendix A.2 of Cook (2023).
6We use 2019 ACS block groups rather than 2010 Census blocks as the 2010 Census is now significantly out-of-date.

The results are similar if we instead use 2010 blocks to identify white and non-white devices.
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that makes this cut is Spokane-Spokane Valley in Washington. The final sample includes 321,955
students and 9.1 million adults.

2.2 Measuring Experienced Isolation and Exposure to Diversity

To estimate experienced income and racial isolation, we follow the methodology introduced in
Athey et al. (2021), which we describe in detail in Appendix Section A.4. Experienced income
isolation in an MSA measures the difference between the share of lower-income residents’ interac-
tions with higher-income residents and the share of higher-income residents’ interactions with other
higher-income residents. Using GPS data, we define each device’s exposure to members of each
race and income group based on the time they spend in each location and the race and income
distributions of other devices in that location. An income isolation measure of 0.5 would imply
that lower-income devices interact with fifty percentage points fewer higher-income devices than
do other higher-income devices.

These measures capture isolation in space, which may not map one-to-one with social segregation
nor meaningful interactions between devices sharing a geographic location (White, 1983). For
example, students in diverse schools may occupy similar spaces but still form social cliques split
along racial lines. Similarly, higher-income devices may visit establishments where they share a
space with lower-income workers but may not truly interact with these other individuals.

We compute experienced isolation for both race and income. For racial isolation, we follow
Athey et al. (2021) and use the WD and NWD designations based on a device’s home neighborhood
block group demographics. To be precise, these results give us the isolation between people from
predominantly white neighborhoods to those from predominantly non-white neighborhoods. For
income isolation, we use the individual income estimate outlined above, and split devices based
on whether their estimated income is above the median income in the CBSA ("higher-income") or
below the median income ("lower-income").

Experienced isolation is a population-level statistic based on the interactions of all devices within
an MSA, so we introduce a complementary individual-level measure, which we call "exposure to
diversity." Exposure to diversity measures how much a given device’s interactions are with devices
of the opposite group. For example, a WD’s exposure to diversity is the share of their interactions—
proxied by the places they visit—with NWDs.

2.3 Defining Urban Mobility

In addition to experienced isolation, we look at four other categories of urban mobility: 1) time
spent at primary locations (home, work/school, and in the neighborhood); 2) "roaming ranges," or
how far devices tend to travel from home, and the number of unique places they visit; 3) use of
amenities such as restaurants and shops; and 4) characteristics of tracts visited.
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To facilitate an analysis of the connection between neighborhoods and urban mobility, we also
collapse our mobility measures down to a single mobility index for each device. Specifically, we first
standardize each measure using the cross-device mean and standard deviations of the variables,
then use Principal Component Analysis (PCA) to collapse the measures into a single measure.7

The individual measures included are the time at home, work/school and in the neighborhood,
number of visit to each category of amenities, number of unique locations visited, and the average
miles traveled from home. Finally, for interoperability, we transform the first principal component
into a z-score, which we use as our final index of urban mobility. Appendix Table B2 shows the
correlation between this index and each of the component parts.

2.4 Data Availability

The data that support the findings of this study are available from Replica, but restrictions
apply to the availability of the data; access was provided under a Data Use Agreement that prohibits
sharing the underlying data.

3 Results

We start by examining students’ urban mobility in comparison to adults. We document expe-
rienced isolation by race and income and then turn to broader measures of travel, urban amenity
consumption, and time use. We then look within the student population to see who benefits
from cities and dense urban areas. We focus in particular on household income, both because we
hypothesize that income plays a critical role in urban mobility and because our data allows us
uniquely to explore differences in income while holding fixed narrow neighborhoods of residence.8

In the last section, we look at correlates with the component of urban mobility that is explained
by neighborhood.

3.1 Students and Adult Differences in Experienced Isolation

We find that students experience 21% greater racial isolation and 13% greater income isolation
than adults. The first row in Table 1 shows that racial isolation outside the home is 0.38 for students,
compared to 0.31 for adults, which is similar to the difference between the 25th and 75th percentile of
cities when ranked by overall experienced isolation. Similarly, experienced income isolation outside
the home is larger for students (0.26) than for adults (0.23). To facilitate interpretation, imagine

7To put similar weight on amenities, time at locations, and roaming ranges, we first use PCA within each category
of mobility and then use PCA across the components estimate for each category.

8Another reason to focus primarily on income—rather than race or ethnicity—is that our measure of income
based on a device’s home parcel is less susceptible to measurement error than our measure of race. Other work in
this literature has instead focused more prominently on differences in mobility and neighborhood exposure by race
(Levy et al., 2020; Candipan et al., 2021; Brazil, 2022; Xu, 2022).
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everyone always interacts with exactly one other person. Since we have split income groups at the
median, an isolation measure of 0.26 means that a higher-income student interacts with another
higher-income student 63% of the time and with a lower-income student 37% of the time (for a
difference of 26 percentage points). The levels of experienced isolation rise when we include time
within the home, but the student-adult gap remains similar.9 In Appendix Section B.5, we do a
simple back-of-the-envelope calculation to account for bias from including teachers in the “student"
sample and find the student estimates change by less than one percentage point.

Since experienced isolation is defined at the population level, we shift to the individual level
using “exposure to diversity,” defined in Section 2.2, which captures each individual’s exposure to
the other group. Outside of the home, adults are in settings where, on average, 25% of others are
from the other racial group and 36% of others are from the other income group (Table 1, panel b).
The average exposure to racial diversity is 4.7 percentage points lower for students, which reduces to
3.4 percentage points once controlling for tract of residence. We can split these results by imputed
race. We find the typical WD is in a setting where 19% of devices are NWD, while the typical NWD
is in a setting where 35% of devices are WD. For students, these numbers are again significantly
lower, at 15% and 32%. The result of greater exposure to racial diversity for Black devices parallels
the findings in Browning et al. (2022). However, while Browning et al. (2022) emphasizes that
difference, our focus is on the fact that all students are more isolated than their adult counterparts.
Similarly, students’ exposure to income diversity is three percentage points lower than adults’ at
baseline; perhaps surprisingly, this difference is driven primarily by higher-income students, who
are significantly more isolated by income than their adult counterparts.

These estimates suggest that, for students, experienced urban isolation may fall along racial lines
more than along lines of income. When we control for the home tract, average exposure to income
diversity is two percentage points lower for students than adults. The persistence of students’ lower
levels of exposure to diversity by both race and income when controlling for home tract refutes the
notion that the increased isolation of students is mainly driven by the neighborhoods students live
in relative to working adults.

3.2 Experienced Isolation by City Size

We now compare the experienced isolation of students and adults in cities of different sizes. Our
main sample pools the one hundred most populous US cities, while Table 2 splits this sample based
on whether individuals live in the largest, middle, or smallest third of our sample of cities. The
first two columns in Table 2 examine experienced racial isolation for students and adults. Students

9The higher magnitude of isolation including time at home partially mechanical – recall that for racial segregation,
complete isolation at home occurs by definition, as the racial groups are coded at the block group level. While our
income measure is more precise than our imputation of race because it uses house-level data, because we use the
block group income distribution to update our estimates of income the isolation measures including time at home
will still be mechanically higher.
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Table 1: Experienced isolation of students and adults

Panel a) Overall experienced isolation (EI) Aggregate Students Adults

Outside of home
Racial isolation 0.3134 0.3763 0.3110
Income isolation 0.2338 0.2630 0.2320

Including time at home
Racial isolation 0.7092 0.7597 0.7075
Income isolation 0.6154 0.6563 0.6136

Panel b) Individual exposure to diversity Average Coefficient on isStudent
(Home CBSA controls)

Coefficient on isStudent
(Home tract controls)

Racial diversity

Exposure to racial diversity 0.2519 -0.0468 -0.0337
(0.0005) (0.0003)

Exposure to NWD by WD 0.1943 -0.045 -0.0356
(0.0004) (0.0003)

Exposure to WD by NWD 0.3484 -0.0282 -0.0311
(0.0009) (0.0006)

Income diversity

Exposure to income diversity 0.3606 -0.0303 -0.0198
(0.0005) (0.0004)

Exposure to L by H 0.3091 -0.0458 -0.0388
(0.0005) (0.0004)

Exposure to H by L 0.4331 0.0136 0.0145
(0.0009) (0.0005)

Note: This table documents overall experienced isolation measures, computed as a weighted average of MSA level
measures, with weights corresponding to the MSA population. ‘At home’ is defined as within 50 meters of home location.
Panel b) runs individual-quarter regressions of exposure to diversity on whether the device is a student with either home
MSA or home Census tract fixed effects. Exposure to diversity excludes time spent at home. H and L refer to higher and
lower-income, respectively, while WD and NWD refer to white device and non-white device.
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in our biggest cities experience 41% more racial isolation than students in our smallest cities, while
adults in our biggest cities experience just 9% more racial isolation than adults in our smallest
cities. Student racial isolation is 42% higher than adult racial segregation in the biggest cities,
while student isolation is less than 10% higher than adult segregation in the smallest cities. A
similar pattern emerges for income isolation. In large cities, income isolation is 32 percent higher
for students than for adults, while in small cities, income segregation is only 12% higher for students
than for adults. Both measures suggest that urban size increases the isolation of our student sample
relative to the population as a whole.

Table 2: Experienced isolation and urban mobility by city size

Experienced racial isolation Experienced income isolation

City size Students Adults Students Adults

Big – rank 1-33 0.384 0.271 0.314 0.237
Medium – rank 34-66 0.327 0.263 0.294 0.251
Small – rank 67-100 0.272 0.248 0.278 0.249

Note: This table documents average differences in experienced isolation and urban mobility across cities of different sizes.
Cities are ranked based on their 2010 population. Each statistic is computed at the city-level and then averaged across all
cities within a given size group.

3.3 Student and Adult Differences in Overall Urban Mobility

Urban neighborhoods provide not just interactions with people but also interactions with the
geographic and economic amenities of cities. We now look at the additional mobility outcomes
described in Section 2.3. As in Table 1, Table 3 reports results controlling first for MSA and then
for home census tract.

Students and adults differ in the amount of time spent at home, work/school, and in the
neighborhood (Table 3, panel a). The average device spends 66% of time at home, 16% of time at
work/school. and 5% of time in their home neighborhood.10 Students spend less time at school
than adults spend at work, and more time at home and in the neighborhood than adults. In
particular, controlling for home tract, students spend nearly 50% more time in their surrounding
neighborhood.

When outside the home, students and adults differ in how far they “roam” (Table 3, panel
b). The average distance from home is 7.5 miles across all devices; this distance is about 35%
smaller for students, a gap that persists even when comparing students and adults living in the
same tract. Although students travel shorter distances, their travel patterns are less routine. The
average student visits 5% more unique locations—defined by 500ft × 500ft squares—than the

10We compare this with the time-use results in the American Time Use Survey (ATUS). Averaging across the 2009
to 2019 period to increase the sample size (to around 4,000 high school students), we find high school students in the
ATUS report spending 66% of their time at home and 18% of their time at school.
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Table 3: Urban mobility of students and adults

Average
(not logged)

Coef. on isStudent
(Home CBSA FEs)

Coef. on isStudent
(Home tract FEs)

Panel a) Time at primary locations

Frac. of time at home 0.6573 0.0243 0.0203
(0.0005) (0.0004)

Frac. of time at work/school 0.161 -0.0165 -0.0127
(0.0003) (0.0002)

Frac. time in neighborhood (excl. home) 0.0488 0.0215 0.0231
(0.0003) (0.0002)

Panel b) Roaming ranges

Log avg miles from home 7.5021 -0.3543 -0.3898
(0.0019) (0.0014)

Log # unique locations (geohash7) 42.8904 0.0528 0.0138
(0.002) (0.0017)

Panel c) Visits to amenities

Log # restaurant visits 1.5151 -0.0982 -0.1137
(0.0023) (0.0019)

Log # retail visits 1.9806 -0.1948 -0.2181
(0.0025) (0.002)

Log # park visits 1.1746 0.0778 0.0577
(0.0022) (0.0018)

Log # entertainment visits 1.399 0.0672 0.0318
(0.0022) (0.0019)

Log # civil, social, religion visits 0.2523 0.0326 0.025
(0.0011) (0.001)

Panel d) Characteristics of tracts visited

Log median HH income 76386 0.0829 0.0381
(0.0008) (0.0006)

Frac. college graduate 0.3924 0.0105 0.0017
(0.0003) (0.0002)

Frac. White alone 0.5733 0.0285 0.0071
(0.0004) (0.0002)

Air quality (PM25) 8.8084 -0.026 0.0079
(0.0016) (0.0012)

Log crimes per sq. mi. 9.711 -0.1973 -0.0709
(Chicago & Los Angeles, 2010-2018) (0.0159) (0.0085)

Note: The table documents coefficients from regressions of mobility metrics on whether the device is a student with fixed
effects for either the device’s home MSA or Census tract. Miles from home is the average distance of stays outside of the
home on days the device stayed within 50 miles of home, weighted by the stay duration. “At home/work/school” is
defined as within 50 meters of the location’s coordinates, while ‘in the neighborhood’ is defined as within 1 mile of home.
We use data on the average estimated tract level air pollution in 2019 from the Environmental Protection Agency (EPA).
For the crime outcomes, we subset to just devices that live within those city boundaries and measure crime as the sum of
all crimes reported between 2010-2018 in a tract. The characteristics of tracts visited results exclude time spent at home
or work/school. To handle zeros, we use the inverse hyperbolic sine instead of the logarithm. Both the averages and
regressions use the device weights; for tract outcomes, the regressions are also weighted by time spent in the tract.
Standard errors are clustered at the device-quarter level.
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average adult, although much of this difference in exploration can be explained by differences in
where students live.

The somewhat modest connection between student status and unique locations masks a large
shift in the nature of the locations visited (Table 3, panel c). Controlling for home tract, students
visit 11% fewer retail shops and 22% fewer restaurants, but 3% more entertainment venues and 6%
more parks. Students also visit more civic, religious, and social venues, but the overall number of
such visits among both students and adults is small.11

Finally, when outside of home and work/school, students visit Census tracts that are on average
richer, better educated, have a higher white population share, less pollution, and less crime (Table
3, panel d). To evaluate this, we compute the time a device spends in each Census tract and regress
characteristics of the tract on student status, weighting by the time spent in the tract. While the
gaps between average education, pollution, and white share of the population of tracts visited by
students compared to adults are quite small, the gap in the crime rate is large. Our crime data
are limited to Chicago and Los Angeles due to data availability, but in those cities, students visit
tracts with 20% fewer crimes per square mile. The gap in crime rate falls to 7% when controlling
for home tract, suggesting that students live in lower-crime neighborhoods on average, perhaps
because childless adults may take more locational risks when deciding where to live than adults
with children.

Overall, these results suggest that while students experience more isolation than adults—
especially along racial lines—in other ways, the overall experience of urban youth differs from
that of urban adults predictably. Students generally go to somewhat nicer neighborhoods and are
exposed to slightly less crime. They go to fewer restaurants and shops, but more parks and enter-
tainment venues. Yet this overall picture of teenage life in cities masks considerable heterogeneity
by levels of income among the student population.

3.4 Household Income and the Urban Mobility of Students

We now look at the relationship between urban mobility, household income, and home neigh-
borhood characteristics. We find that both play a role – higher-income students have greater urban
mobility across a range of measures holding neighborhood fixed, but also, even for students with
similar income, neighborhood characteristics matter. We continue to focus on students in the main
text, but Appendix Figure C.4 reproduces these results for the adult population.

To document differences by income, we divide devices into quartiles of predicted household
income and compare a range of mobility measures across each quartile.12 For each measure, we

11These visits exclude those to any location identified as a device’s workplace, so the differences are not driven by
adults being more likely to work at restaurants and shops.

12We believe that measurement error in income would likely attenuate the estimated relationship between income
and mobility; however, families who spend more on their housing relative to permanent income, may be more
interested in consuming urban amenities.
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present versions controlling only for a device’s home MSA and a version controlling for home tract.
First, relative to the baselines from Table 3, students in the highest income quartile spend about

5% less time at home and 18% more time in the neighborhood than students in the lowest income
quartile (Figure 1, panels a and b). The effect declines substantially when we control for home
tract, suggesting a large part of the reason lower-income students spend more time at home and
less time in their neighborhood is due to the neighborhood itself.

Second, richer students both visit more unique locations and tend to travel further when they
leave the house (Figure 1, panels c and d). The relationship between income and the number of
locations visited is strong and monotonic. Students in the highest income quartile visit 54% more
unique locations than students in the lowest income quartile. The link between distance from home
and income is non-monotonic, although the bottom quartile of income stays the closest to home.
When controlling for home tract, the coefficients drop by about half, but the relationship between
income and the number of unique places visited remains strong.

Third, there are stark differences by income in students’ consumption of various local amenities
such as restaurants, shops, and parks (Figure 1, panels e and f). The strongest relationship is
between income and visits to entertainment venues – controlling for home MSA, students from
the top income quartile visit 57% more entertainment locations than those in the bottom income
quartile. The impact of income on park and restaurant visits is smaller, but still large. Students in
the highest-income quartile make 35% more visits to restaurants and 38% more visits to parks than
students in the lowest-income quartile. On average, the gap between the top and bottom quartiles
attenuates by 45% when controlling for home tract, but again remains large.

Finally, there is a weak relationship between household income and exposure to both income and
racial diversity (Figure 1, panels g and h). Exposure to income diversity is unsurprisingly lowest
for the middle of the distribution, as people with incomes slightly above the median income are
likely to interact with people whose incomes are below the median. As we move out to the top and
bottom quartiles, however, we see some asymmetries: students from the highest-income households
are more isolated from below-median-income households than the lowest-income households are
from above-median-income households, echoing our results from Table 1. The connection between
income exposure and income remains large when we control for home tract, suggesting this trend
is not a function of where families live in a metro area, but a more fundamental characteristic of
household travel patterns. Racial exposure to diversity declines with income, though the effects are
small and, once we control for tract, the relationship becomes economically insignificant.

As a validation check, we conduct a similar exercise using the 2017 National Household Trans-
portation Survey (NHTS) in Appendix Table B4. Although the NHTS does not allow us to look at
detailed destination types or to control for neighborhood differences, we can look at some trends
by income. Similar to our results, we find that both travel for amenities and time away from the
home are rising in household income.
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Figure 1: Urban mobility of students by income
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(b) Time at primary locations (Tract FEs)
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(c) Roaming ranges (MSA FEs)
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(d) Roaming ranges (Tract FEs)

p0-p25 p25-p50 p50-p75 p75-p100
Household income quartile

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Lo
g 

ou
tc

om
e

Outcome
Unique places visited
Distance from home

(e) Visits to amenities (MSA FEs)
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(f) Visits to amenities (Tract FEs)
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(g) Exposure to diversity (MSA FEs)
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(h) Exposure to diversity (Tract FEs)
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Note: This figure plots the relationship between student income and various measures of urban mobility. Each point is
a coefficient from a regression of a device-quarter level mobility measure (e.g., fraction time at home) on indicators for
whether the quartile of a device’s predicted income and MSA fixed effects. 95% confidence intervals are represented by
bars around each point (although they are frequently covered by the point itself).
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3.5 Correlation of Urban Mobility with Neighborhood Characteristics

How does the urban mobility of students relate to the characteristics of their home neighbor-
hood? To facilitate an analysis of the connection between neighborhoods and urban mobility, we
collapse our mobility measures down to a single index for each device, defined in Section 2.3. The
first panel of Figure 2 shows that, as shown above for the component parts, urban mobility increases
steeply with the predicted household income of the device. The linear coefficient when the mobility
index is regressed on log predicted income is 0.41, suggesting that a twofold increase in predicted
income increases urban mobility by nearly half of a standard deviation. In all subsequent panels,
we show results with controls for just MSA as well as with controls for the log of predicted income,
to isolate the correlation that persists beyond the impact of household income. Appendix Table
B3 reports the coefficients from analogous linear regressions, which we report in the main text to
summarize the graphs.

Even controlling for household income, there is a persistent positive relationship between urban
mobility and neighborhood median household income (panel b). Without controls, the coefficient on
neighborhood income is 0.40, which is almost as large in magnitude as the coefficient on individual
income. When we include both variables in a regression, the coefficient on neighborhood income
attenuates to 0.17; even for devices of a similar income level, those in higher-income neighborhoods
exhibit greater urban mobility.

Urban mobility is decreasing in measures of “urbanity,” such as population density and prox-
imity to city hall (Figure 2, panels c and d). The linear coefficient for urban mobility regressed on
log population density is -0.09, which falls in magnitude to -0.07 when we control for individual
income. While denser areas have more nearby amenities to visit, devices living in these areas have
lower urban mobility on average. Similarly, mobility rises with the log distance from city hall. The
coefficient without income controls is 0.15, which falls to 0.10 when we control for income. One ob-
vious reason students in dense neighborhoods might have lower mobility is that they might be less
likely to have access to a car. Panel e) looks at the share of households in the tract that own a car.
There is a strong relationship between urban mobility and car ownership: for each ten percentage
point increase in car ownership (approximately one standard deviation), urban mobility increases
by 0.16 standard deviations. In contrast, urban mobility is slightly lower in neighborhoods that
the Department of Housing and Urban Development (HUD) identifies as having greater transit
access. This relationship between urban mobility and transit access, however, is primarily driven
by population density; once controlling for population density, there is no meaningful relationship
between urban mobility and transit access.

Finally, urban mobility is positively correlated with measures of neighborhood social capital
as measured by connections on social media (Figure 2, panels g and h). Panel g) looks at the
link between geographic mobility and economic connectedness, which is a measure of Facebook
connections between lower and higher-income individuals (Chetty et al., 2022a). Specifically, it is
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the average share of above-median socioeconomic status friends among below-median socioeconomic
status residents of the zip code. The linear coefficient is 0.76, which falls to 0.32 when we control
for individual income. Panel h) shows a weaker positive link between urban mobility and how
clustered social connections are for neighborhood residents (“network clustering”), another measure
produced by Chetty et al. (2022a) that captures the rate at which two friends of a resident are also
friends with each other. The relationship between mobility and network clustering is attenuated
when controlling for population density, but the relationship with economic connectedness persists.
This finding is consistent with the hypothesis that virtual connections rely on physical ones; links
between different groups happen when people traverse their city, such that areas with higher urban
mobility generate more bridging social connections. Of course, it is equally possible that causality
goes the other way, and that greater social capital leads to greater urban mobility, as our findings
are only correlations.

4 Conclusion

Students experience greater income and racial isolation than adults, and this gap is much
larger in the biggest metropolitan areas. Students also spend more time at home and in their
neighborhood, stay closer when they leave the home, and lead less routinized lives, visiting more
unique locations.

Differences in urban mobility are even larger within the population of students across different
levels of income. Higher-income students are much more likely to visit every form of local amenity,
explore more unique locations, spend less time at home, and roam further from home. In each case,
the differences attenuate when comparing students who live within the same neighborhood, but
often remain large. On average, home neighborhoods can explain about half of the gap between
the mobility differences of higher versus lower-income students.

Urban mobility is correlated with a range of neighborhood characteristics, even controlling for
a device’s income. Areas that have higher car ownership, are less dense, and higher neighborhood
income all have higher levels of urban mobility. Urban mobility is also higher for students living in
tracts that have greater social capital, perhaps because physical connection increases social capital.

This work highlights a central paradox of urban America. Lower-income youth living in urban
areas, where amenities and public goods are dense, appear to be getting the least out of urban life.
Income seems to condition the benefits of urban living. We hope that future work will help us to
understand why lower-income residents seem to get less out of cities and to identify the long-run
consequences of reduced urban mobility.
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Figure 2: Correlates of urban mobility
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(c) Population density
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(d) Distance to city hall
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(e) Frac. households with car
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(f) Index of transit access
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(g) Economic connectedness
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(h) Network clustering
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Note: This figure plots the relationship between a device-quarter level index of urban mobility and various device and home
neighborhood characteristics using a series of binscatters, controlling for MSA fixed effects and, for some, the log of a de-
vice’s predicted income. Transit access is based on an index published by the Department of Housing and Urban Develop-
ment (HUD). Economic connectedness and network clustering are measures of social capital based on the Facebook social
graph (Chetty et al., 2022a). Economic connectedness measures friendships across income groups while network cluster-
ing measures how likely it is that any two friends of a given person are themselves friends on Facebook. 95% confidence
intervals are represented by bars around each point (although are frequently covered by the point itself).
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A Supplementary Information

A.1 GPS Data

The GPS data come from an unbalanced panel of GPS-enabled devices in 2019. The underlying
data are a series of ‘pings’ that consist of a device identifier, coordinates, and timestamp. Pings
can be triggered either by a user opening specific apps or via apps that share location data in the
background. Our data from Replica are aggregates of pings into “stays” at locations, which each
stay includes the device identifier, an entry/exit time, and GPS coordinates. Replica combines
pings into stays using a spatio-temporal clustering algorithm similar to ST-DBSCAN (Birant and
Kut, 2007). For example, a visit to the supermarket may result in a hundred pings, all of which
would become a single stay. One limitation of using stays rather than raw pings is that we do not
observe any time in transit; pings that occur between stays (e.g., on the highway) are discarded as
part of the stay construction process.

Replica identifies home and work locations based on heuristics for when individuals tend to be
at home versus work. Home location is generally the most common overnight location in a quarter,
while work locations is generally the most common non-home daytime location.13 A recurring issue
with GPS data is what to do with devices that appear only sparingly. There are 132 million unique
devices in the raw data, but the median device had only nine observed stays and was seen in only
two months of 2019. Only 3% of devices average over 60 stays a month.

To identify visits to different types of establishments, we use data from SafeGraph on the loca-
tions of various Points of Interest (POIs). The establishment data include the polygon describing
the establishment’s footprint. We use this polygon to identify when a device visits a given establish-
ments. For establishments located within a larger parent location (e.g., a restaurant within a mall),
we assign the parent location rather than trying to disambiguate the individual establishment.

We categorize establishments according to their North American Industry Classification System
(NAICS) code. Restaurants are those with NAICS codes beginning with “722”. Retail locations
are those establishments with NAICS codes beginning with “44” or “45”. Parks, while not estab-
lishments, are identified in SafeGraph with a NAICS code of “712190”. Entertainment locations
are all non-park POIs with a NAICS code beginning with “71”. Finally, religious organizations are
those with NAICS codes beginning with “8131”.

A.2 Building a sample of schools

To build a sample of schools, we start with a directory of school locations from the National
Center for Education Statistics (NCES) and include only public high schools. The NCES data
only includes the school address, name, grades served, and enrollment. Moreover, the address
is often a PO box or simply the town center rather than the actual school location. To match

13We require devices to have at least eight overnights and five days at work in the quarter to make the sample.
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NCES schools to parcels, we first match each school to Safegraph data on schools using the school’s
name and location. The Safegraph data includes precise coordinates for each school as well as
polygons. Unfortunately, the Safegraph polygons—which are often automatically generated from
satellite imagery—are often inaccurate for schools; for large schools with multiple buildings, the
polygon will generally only include a single building. We instead match the Safegraph coordinates
to parcel-level data from LandGrid. These parcels come from local municipalities and provide more
accurate boundaries for school locations. In total, 79% of schools representing 89% of enrollment are
successfully matched to a parcel. Table A1 documents differences in characteristics of in-sample and
out-of-sample schools; most notably, in-sample schools have substantially higher average enrollment.

Figure A.1 plots the relationship between a school’s enrollment and the number of devices we
label as a student at that school. The two counts of students are highly correlated. Figure A.2
plots the percent of residents who are students in the GPS sample as well as the percent who are
in grades 9-12 in the 2019 5-year ACS. Students predominantly live in the less dense areas of the
city. The overall trend is true in both the ACS and GPS, although we consistently find fewer high
school (HS) students in the GPS data than in the ACS. This could be due to a number of factors,
including that many HS students are under 16 years old and that we cannot match all schools to
parcel polygons.

Figure A.1: NCES school enrollment & number of devices in sample

0 500 1000 1500 2000 2500 3000 3500
School enrollment

20

40

60

80

100

# 
de

vi
ce

s

Note: This figure plots the relationship between the enrollment of a school as reported by the NCES and the number of
devices labeled as a student of that school.

A.3 Sample Quality and Sample Weights

Figure A.4 plots the distribution of block group fraction white-alone (non-Hispanic). The
average block group of white devices is 78.5% white, while the average block group of non-white
devices is 21.0% white.
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Table A1: Characteristics of in-sample and out-of-sample schools

In-sample Out-of-sample

Enrollment 558.66 258.56
(4.84) (5.97)

Number of teachers 35.85 17.35
(0.27) (0.38)

Tract median income 77534 74124
(259) (492)

Tract fraction white (non-Hispanic) 0.698 0.688
(0.002) (0.003)

N 22661 6098

Note: The table documents the average of a range of characteristics for schools that are in-sample and out-of-sample. Tract
characteristics are based on the 2019 5-year ACS. Standard errors are reported in parentheses.

Figure A.2: Percent of residents who are students by density
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Note: This figure plots the percent of residents who are students by within-CBSA home block group density. We
separately plot the percent student in the GPS sample as well as the percent in grades 9-12 in the 2019 5-year ACS.
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Figure A.5 plots the fraction of devices that live in each decile of tract characteristics. If
sampling were orthogonal to tract characteristics, 10% of devices would be sampled from each
decile. Instead, we can see that devices are over-sampled from poorer, less white, less educated,
and more dense areas.

To address the uneven sampling of devices, we re-weight home locations to match the distribu-
tion of the 2019 5-year ACS by using the following sample weights

λiq =
Ng(iq)

Ñg(iq)

where Ng(iq) is the ACS population of a device’s home tract g and Ñg(iq) is the total number of
devices observed in tract g in quarter q. The average device weight is 20.2 (standard deviation of
12.9). We use these weights for all results.

The GPS data is both a sample of devices and a sample of each device’s overall movement;
we do not observe a device’s full location history, but only times at which an app recorded their
location and shared it with data aggregators, which can happen both in the background or when
a user actively opens an app. One concern is that students and adults may vary in both the apps
they use and when they interact with each app. Figure A.3 Panel (a) plots the average number of
minutes observed in each hour of the day for each day a device is in the data, where “observed” is
defined as the time between the entry and exit times of a stay. On average, we observe 29 minutes
of each hour. The number of minutes observed varies slightly by the hour of the day, with greater
coverage during the morning and evening hours. The time not covered by stays can be due to
either travel or poor coverage; unfortunately, we are not able to test whether devices were pinging
in between the observed stays (e.g., on a highway), although the missing time during the night is
almost certainly poor coverage rather than travel. Figure A.3 Panel (b) plots the average minutes
observed each day for different types of devices; students, white-devices (WD), and higher-income
devices are each observed slightly more than adults, non-white devices, and lower-income devices
(respectively).

A.4 Experienced Income and Racial Isolation Measures

Aggregate experienced isolation between any two groups A and B is defined as the difference
between the average exposure of group A to other members of group A and the average exposure
of group B to members of group A. Specifically, we define

EIg = 1
|Ag|

∑
i∈Ag

ˆ 1

t=0
s(l(i, t), t)dt− 1

|Bg|
∑

i∈Bg

ˆ 1

t=0
s(l(i, t), t)dt, (A.1)
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Figure A.3: Time observed for devices
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(b) Stay coverage by device type (hourly)
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Note: This figure plots the average number of minutes observed in an hour by time of day and by device type for days
when a device is observed at least once. We define “observed” as the time between the entry and exit time of a stay.

where g indicates a geographic unit such as CBSA, Ag is the set of devices in group A, Bg is the
set of devices in group B, and s(l(i, t), t) is the share of devices in individual i’s location l at time
t who are from group A.

We make several assumptions in order to estimate Equation A.1. First, we assume that
s(l(i, t), t) does not vary by time for a given location.14 Second, we assume that the full popu-
lation of visits can be approximated using the device sample, re-weighted accordingly. Finally, we
discretize locations by geohash7s (approximately 500×500 feet).

To estimate Equation A.1, we first construct leave-one-out estimates of s(·) for each individual
and location pair as:

ŝ−i
l =

∑
j∈P A,−i

l
dj∑

k∈P −i
l
dk

, (A.2)

where P−i
l is the set of stays in location l by devices excluding i, PA,−i

l is the set of stays in location
l by members of group A, and dj is the duration of stay j. Weighting by duration in the location
approximates the ping-level measure used in Athey et al. (2021). Next, for each individual-quarter
in our sample, we measure aggregate exposure as the duration weighted average ŝ−i

l :

Ŝiq =
∑

j∈Piq
ŝ−i

l(j)dj∑
k∈Piq

dk
(A.3)

where Piq is the set of all stays by device i in quarter q and l(j) is the location corresponding to
stay j.

14This is most clearly violated in residential areas, where daytime and nighttime populations will differ substantially.
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Figure A.4: Distribution of block group level fraction white
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Note: This figure plots a histogram of the number of the number of devices sampled from different bins of home block
group fraction white alone (non-Hispanic). The solid line represents the mean fraction white for each WD and NWD; the
dashed line is the median.

Figure A.5: Sampling of devices by block group characteristics
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Note: This figure plots the fraction of devices that live in each decile of tract characteristics. If sampling were orthogonal
to tract characteristics, 10% of devices would be sampled from each decile.
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Finally, we estimate experienced isolation for CBSA g as:

ÊIg = 1
|Ag|

∑
i∈Ag

∑
q∈Qi

Ŝiq −
1
|Bg|

∑
i∈Bg

∑
q∈Qi

Ŝiq (A.4)

where Qi is the set of quarters in which device i is observed and we abuse notation slightly to
let Ag be the set of all device-quarters (rather than just devices) of group A in geography g and
Bg be the corresponding set of device-quarters of group B.15 To estimate experienced isolation for
students and adults, we estimate Equation A.4 separately for each type. Note that the leave-one-out
estimates of exposure remain the same for both groups – consequently, our experienced isolation
measure for students measures exposure to both students and adults.

We also define a new companion measure to facilitate individual-level regressions, which we
call experienced diversity. Experienced isolation is a population-level statistic; for example, an
experienced isolation score of 0.1 implies a gap of 10 percentage points in the exposure to members
of group A by other members of group A relative to members of group B. Experienced diversity,
in contrast, is the average exposure to devices of the opposite group and is estimated as

ÊDiq = 1∑
j∈Piq

dj

∑
j∈Piq

1{i ∈ B} × ŝ−i
l(j)dj + 1{i ∈ A} × (1− ŝ−i

l(j))dj (A.5)

The two measures are closely linked – experienced isolation is a transformation of the average
experienced diversity by each group in a city.

B Additional results

B.1 Experienced Isolation with Continuous Race

Our baseline measure of experienced isolation uses a binary measure of race—as in Athey et al.
(2020)—based on whether a device’s home block group is majority white non-Hispanic or not. We
also explore assigning devices a continuous measure of race using the percent of their home block
group that is white. Using this continuous measure of race, we can estimate experienced racial
isolation as

ÊI
C
g = 1

|WDg|
∑

i

∑
q∈Qi

ρiqλiqŜiq −
1

|NWDg|
∑

i

∑
q∈Qi

(1− ρiq)λiqŜiq (B.1)

where ρiq is the continuous measure of race, |WDg| =
∑

i

∑
q∈Qi

λiqρiq, and |WDg| =
∑

i

∑
q∈Qi

λiq(1−
ρiq)

15We weight all statistics using device-quarter weights that correct for unevenness in the home locations of the
GPS sample compared to the ACS. We provide more details on these weights, which are used for all results in the
paper, in Appendix Section A.3.
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The results are in Table B1. Using this measure, students are 4.12% more isolated in aggregate
and 17.6% more isolated when outside of the home. However, the levels are dramatically different.

Experienced isolation with continuous race will be biased downward relative to “true” exposure
to diversity. Imagine a device whose true exposure to white individuals is 100%. When using a
continuous measure of race, each exposure to a white individual will not count as a fully segregated
exposure but instead will assume the device is exposed to the average percent white in the indi-
vidual’s home block group, making it look like the device has more diverse exposures than it does.
Similarly, a device whose true exposure is 0% white will have a positive estimated exposure.

Table B1: Experienced isolation using continuous measure of race

Panel a: experienced isolation Aggregate Student Adult

All 0.2134 0.2248 0.2123
Excluding time at home 0.1141 0.1370 0.1129
Excluding time in home tract 0.1060 0.1274 0.1050

Note: This table documents a few basic measures of experienced isolation using a continuous measure of race based on the
percent non-white in a device’s home block group

B.2 Exposure to Diversity and Home Block Group Race

Figure B.1 plots the relationship between the percent white in a device’s home block group and
the device’s exposure to diversity. This figure is constructed by regressing exposure to diversity
for a given device-quarter on whether the device is a student, interacted with the percent of their
home block group’s residents who are white (truncated to the nearest 10%). Recall that exposure
to diversity uses WD and NWD, rather than true race; as such, devices in racially mixed block
groups still have exposure to diversity well below 50%.

B.3 Experienced Isolation and School Dissimilarity

Figure B.2 compares measures of segregation from GPS data at the MSA level to the dis-
similarity indices from Logan et al. (2012, 2017) for the top 50 MSAs. The first measure is the
experienced isolation of students while at school, while the second is the dissimilarity of WD/NWD
school populations within a CBSA, intended to be analogous to the measure in Logan et al. (2012,
2017). Dissimilarity is defined as the percentage of students in one group who would have to move
to a different school to achieve a racial balance representative of the MSA. The GPS measures
and the Logan measure are positively correlated, which is encouraging, but there are also clear
differences. These differences are perhaps expected for a number of reasons: 1) the dissimilarity
indices are based on 2010 elementary school enrollment while the experienced isolation is based
on 2019 high school students; 2) the dissimilarity indices compare white students and either Black
or Hispanic, while we are comparing students from majority white and non-white neighborhoods;
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Figure B.1: Exposure to diversity by home block group percent white
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Note: This figure documents how exposure to diversity varies by the racial composition of a device’s home block group.
The figure is constructed by regressing exposure to diversity for a given device-quarter on whether the device is a
student, interacted with the percent of their home block group’s residents who are white (truncated to nearest 10%).
The shaded region represents a 95% confidence interval

3) our data will include some teachers; 4) the dissimilarity indices are defined either for MSAs or
PMSAs instead of CBSAs, so the geographic match is imperfect (e.g., the results for Chicago are
comparing the Chicago PMSA and the Chicago-Joiliet-Naperville CBSA).

B.4 Experienced Isolation and Residential Isolation

Figure B.3 plots the relationship between a CBSA’s experienced and residential isolation, split-
ting experienced isolation by whether or not a device is within its home tract. The relationship
is plotted for both binary and continuous race and can help highlight the differences of each type
of race assignment. For binary race, the time at home is estimated to be extremely isolated—
generally far above residential isolation—because devices are spending the majority of their time
in a home parcel where all other devices have the same, binary race. Meanwhile, for continuous
race, experienced isolation is approximately equal to residential isolation while in the home tract.
This is because experienced isolation with continuous race and residential are making a similar
underlying assumption – interactions in the home tract are (approximately) with the average race
of that location.16

For the majority of CBSAs, we estimate that experienced isolation is higher than residential
isolation. This is counter to the findings in Athey et al. (2021). We believe that the discrepancies
stem from differences in data construction. Athey et al. (2021) use raw GPS pings, which are

16The measures differ for two reasons: 1) with experienced isolation, race is measured at the block group rather
than tract level, and 2) interactions in the home block group include outside visitors, although for residential tracts
the majority of interactions are with other residents.
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Figure B.2: GPS measures vs. elementary school dissimilarity
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Note: Figure B.2 compares MSA-level experienced isolation of students while at school and dissimilarity of school
populations of WD/NWD to the dissimilarity indices from Logan et al. (2012, 2017) . The dissimilarity indices are based
on 2010 elementary school enrollment from NCES. The correlation for EI is 0.55 and for dissimilarity the correlation is
0.56.

recorded each time an app on the device connects to GPS, while we use staypoints, which are
aggregations of pings into “stays” in a given location. In Athey et al. (2021), a unit of “exposure”
to a neighborhood is therefore at the ping level, while in our measure we weight by staypoint
minutes in a location.

The use of stays instead of pings leads to larger estimates of experienced isolation for two
reasons, both related to how time spent at home affects the aggregate measure. First, using pings
puts less weight on time spent at home. Devices are less likely to ping overnight while the holder
is sleeping; however, a staypoint is still formed from the evening to the morning. In their earlier
working paper version, Athey et al. (2020) report that 42.5% of pings are at home for the average
device (their Table A3), while devices in our sample are at home for 63.9% of minutes observed.
Excluding nighttime stays, for example, substantially reduces our measure of experienced isolation,
although it remains higher than residential isolation (Table 1).

The second reason is that exposure when using pings will include devices walking/driving
through the location, while standpoints include only those devices that stop for at least 5 minutes
in a location. This difference is particularly noticeable for residential locations – the experienced
isolation in Athey et al. (2020) of “at home” pings is 0.672 (Table A9), which is lower than expected
given that, by definition, all devices who live in that geohash7 are assigned the same race. This low
number is likely due to devices who walk/drive through the location during the day, who are more
diverse than the residents. The assumption that the time people visit a location is independent
of their race is violated in the case of residences where nighttime and day-time populations differ
substantially.
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While the home-based assignment of race makes it difficult to compare experienced and resi-
dential isolation directly, much like Athey et al. (2021), we find that individuals experience far less
isolation outside of the home tract than they do within their home tract and that experienced iso-
lation outside of the home tract is also substantially lower than residential isolation. In many ways,
this is the core insight of their paper: residential isolation overstates the isolation that individuals
experience in their day-to-day lives, as time outside of the home is empirically less isolating. Finally,
while the home-based assignment of race complicates comparisons of residential and experienced
isolation, we do not believe the issue affects the relative differences in either measure of isolation
for students and adults.

Figure B.3: Experienced vs. residential isolation
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(b) Continuous race
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Note: Each figure plots the relationship between experienced isolation and residential isolation at the MSA level.
Residential isolation is estimated to be consistent with the method of estimating experienced isolation; it uses either
binary block-group level race or continuous race.

B.5 Bias From Student Imputation

As detailed in Section 2.1, we define “students” by matching “work” locations to the geographic
parcels of public schools, which results in our student sample inevitably including some teachers
and staff. We expect this to attenuate measured differences between students and adults. It may
also bias comparisons within the student population by race, since teachers are disproportionately
white relative to their student body. If, for instance, teachers have high urban mobility, we may
overestimate the gap in urban mobility for the white versus non-white student populations.

In this section, we do a back-of-the-envelope calculation to estimate this bias. In particular,
we consider the exposure to diversity (ED) results presented in Table 1, panel b. Our estimates
for white adults, non-white adults, white students, and non-white students are 0.194, 0.348, 0.149,
and 0.320, respectively. Taking the average student and teacher populations in sample from A1,
we assume 6% of our “students” are really teachers, 79% of which we assume are white based on
the NCES estimate (Spiegelman, 2020).
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Let the subscript i ∈ {W,NW} indicate white or non-white, the superscripts {s, t} indicate
student and teacher status, N s indicate our original sample size of students, and N t indicate our
new estimated sample size of teachers. We can update ED for white and non-white students as:

EDs∗
i = N s

i · EDs
i −N t

i · EDt
i

N s
i −N t

i

Plugging in the four estimates of ED above updates the estimate for white students to EDs∗
W =

.145 from EDs
W = .149 and for non-white students to EDs∗

NW = .319 from EDs
NW = .320. This

suggests the bias from differences in race between students and adults is fairly limited.

C Supplementary tables and figures

Table B2: Correlation between urban mobility index and its components

Measure (z-score) Corr. with urban mobility index

Urban mobility index 1.0
# restaurant visits 0.649
# retail visits 0.638
# park visits 0.49
# entertainment visits 0.561
# civil, social, religous visits 0.255
Frac. time at home -0.229
Frac. time at work -0.093
Frac. time in neighborhood -0.036
# unique locations 0.773
Avg. miles from home (excl. home) 0.394

Note: This table plots the correlation between the single urban mobility index and each of its component parts. Each
component is z-scored. To construct the index, we first do PCA on each of the three groups: amenity visits, fraction of
time in primary locations, and roaming ranges. We then do a PCA on the resulting principal components and take the
z-score to get our final measure.
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Table B3: Correlates of urban mobility

Outcome: urban mobility index Univariate Controlling for income

Covariate Covariate
Log pred.
income

Device covariates
Log pred. device household income 0.414

(0.006)

Home tract covariates
Log median household income 0.402 0.174 0.271

(0.006) (0.012) (0.012)

Log pop. density -0.0942 -0.0685 0.369
(0.002) (0.002) (0.006)

Log miles to city hall 0.145 0.095 0.381
(0.004) (0.004) (0.006)

Frac. households with car 1.165 0.373 0.377
(0.032) (0.035) (0.007)

HUD transit index -0.0073 -0.0048 0.37
(0.0002) (0.0002) (0.006)

Home zipcode covariates
Economic connectedness 0.761 0.328 0.314

(0.017) (0.023) (0.009)

Network clustering 7.831 4.964 0.401
(0.477) (0.386) (0.007)

Note: This table plots linear coefficients corresponding to the relationships shown in Figure 2. The data device-quarter
level (students only) and include 371,243 observations. The first column regresses the urban mobility index on the listed
covariate and documents. The second and third columns report coefficients on the covariate and on log predicted device
household income from a regression of urban mobility on both. All regressions additionally control for city fixed effects
and are weighted by the device sample weights. Standard errors are clustered at the home tract level, except for the
zipcode covariates where they are instead clustered at the home zipcode level.

Table B4: NHTS Travel Patterns for 16-18 Year Olds

Income quartile Shopping Trips Social Trips Meal Trips Dwelling Time

1 0.277 0.292 0.095 292.542
(0.021) (0.021) (0.011) (8.586)

2 0.35 0.32 0.179 320.575
(0.025) (0.019) (0.013) (6.884)

3 0.22 0.352 0.198 311.193

(0.013) (0.014) (0.011) (5.273)
4 0.254 0.428 0.226 334.674

(0.012) (0.014) (0.01) (4.589)

Note: This table reports mean number of trips and mean total dwelling time for individuals aged 16-18 in the 2017
National Household Transportation Survey (NHTS). The NHTS is a federal survey on travel patterns conducted roughly
once every eight years, and it includes a small sample of individuals age 16-18 (7,239 in the 2017 survey), as well as some
coarse information on travel destinations. Income quantiles are defined by the household income of the entire NHTS 2017
sample. Shopping, social, and meal-related trips are defined by the reported destination of the trip. Dwelling time is the
total minutes the individual reported dwelling at any destination that day. Similar to the results with our data, the
NHTS shows that both travel for amenities and time away from the home are rising in household income.
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Figure C.4: Urban mobility of adults by income
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(b) Time at primary locations (Tract FEs)
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(c) Roaming ranges (MSA FEs)
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(d) Roaming ranges (Tract FEs)
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(e) Visits to amenities (MSA FEs)
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(f) Visits to amenities (Tract FEs)
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(g) Exposure to diversity (MSA FEs)
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(h) Exposure to diversity (Tract FEs)
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Note: This figure replicates Figure 1 using adult rather than student devices. Each point is a coefficient from a regression
of a device-quarter level mobility measure (e.g., fraction time at home) on indicators for whether the quartile of a devices
predicted income and MSA fixed effects. 95% confidence intervals are represented by bars around each point (although
are frequently covered by the point itself).
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Figure C.5: Differences by income for students versus adults

(a) Time at primary locations

Home Work/school Neighborhood
Outcome - % of time at location

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Co
ef

fic
ie

nt
 o

n 
hi

gh
er

 in
co

m
e

Group and fixed effects
Students - metro
Students - Tract
Adults - metro
Adults - Tract

(b) Roaming ranges

Unique locations
(geohash7)

Average distance from
home(excl. home)

Outcome (logged)

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Co
ef

fic
ie

nt
 o

n 
hi

gh
er

 in
co

m
e

Group and fixed effects
Students - metro
Students - Tract
Adults - metro
Adults - Tract

(c) Visits to amenities
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(d) Exposure to diversity
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Note: This figure plots average differences between above and below-median income devices, split by students and adults.
Each point is a coefficient from a regression using device-quarter data of some outcome (e.g., percent of time at home)
on whether the device is above median income, with controls for either home MSA or tract. 95% confidence intervals are
represented by bars around each point (although are frequently covered by the point itself).
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